水除氟用骨炭再生分析——化学脱附途径、表面化学分析与建模

IF 2.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL International Journal of Chemical Engineering Pub Date : 2023-03-06 DOI:10.1155/2023/8378162
H. A. González-Ponce, D. Mendoza-Castillo, A. Bonilla-Petriciolet, H. Reynel-Ávila, K. I. Camacho-Aguilar
{"title":"水除氟用骨炭再生分析——化学脱附途径、表面化学分析与建模","authors":"H. A. González-Ponce, D. Mendoza-Castillo, A. Bonilla-Petriciolet, H. Reynel-Ávila, K. I. Camacho-Aguilar","doi":"10.1155/2023/8378162","DOIUrl":null,"url":null,"abstract":"High concentrations of fluoride (F−) in drinking water represent a public health threat, and consequently, effective and sustainable methods are required to improve the water quality, mainly in developing and low-income countries. This study focused on the thermodynamics of fluoride adsorption on bone char regenerated with NaOH for water defluoridation. A detailed analysis of the number of fluoride adsorption/desorption cycles, their impact on the performance and surface chemistry of bone char using different NaOH concentrations, and modeling of the adsorption mechanism using statistical physics theory was carried out. The results showed that 0.075 mol/L NaOH was effective in recuperating the defluoridation properties of bone char with a regeneration efficiency higher than 90% during five adsorption/desorption cycles. Bone char regeneration efficiency decreased up to 64% after ten adsorption/desorption cycles with a maximum fluoride adsorption capacity of 0.18 mmol/g. NaOH restored the bone char surface properties for ligand exchange of the fluoride anions via the hydroxyapatite functionalities contained in this adsorbent. It was calculated that around 0.25–0.46 mmol/g hydroxyapatite ligand exchange sites of regenerated bone char samples could be involved in the fluoride adsorption, which was also expected to be a mono-ligand mechanism. The reduction in defluoridation properties of bone char during the regeneration cycles was attributed to the decrease in the ligand exchange capacity as well as the deactivation and blocking of some functional groups of hydroxyapatite, which limited their participation in consecutive adsorption processes. This study contributes to the optimization of the recycling and reuse of bone char for fluoride removal from water to reduce the operating defluoridation costs, thus enhancing the application of this technology in low-income areas where fluorinated water represents a threat to public health.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regeneration Analysis of Bone Char Used in Water Defluoridation: Chemical Desorption Route, Surface Chemistry Analysis and Modeling\",\"authors\":\"H. A. González-Ponce, D. Mendoza-Castillo, A. Bonilla-Petriciolet, H. Reynel-Ávila, K. I. Camacho-Aguilar\",\"doi\":\"10.1155/2023/8378162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High concentrations of fluoride (F−) in drinking water represent a public health threat, and consequently, effective and sustainable methods are required to improve the water quality, mainly in developing and low-income countries. This study focused on the thermodynamics of fluoride adsorption on bone char regenerated with NaOH for water defluoridation. A detailed analysis of the number of fluoride adsorption/desorption cycles, their impact on the performance and surface chemistry of bone char using different NaOH concentrations, and modeling of the adsorption mechanism using statistical physics theory was carried out. The results showed that 0.075 mol/L NaOH was effective in recuperating the defluoridation properties of bone char with a regeneration efficiency higher than 90% during five adsorption/desorption cycles. Bone char regeneration efficiency decreased up to 64% after ten adsorption/desorption cycles with a maximum fluoride adsorption capacity of 0.18 mmol/g. NaOH restored the bone char surface properties for ligand exchange of the fluoride anions via the hydroxyapatite functionalities contained in this adsorbent. It was calculated that around 0.25–0.46 mmol/g hydroxyapatite ligand exchange sites of regenerated bone char samples could be involved in the fluoride adsorption, which was also expected to be a mono-ligand mechanism. The reduction in defluoridation properties of bone char during the regeneration cycles was attributed to the decrease in the ligand exchange capacity as well as the deactivation and blocking of some functional groups of hydroxyapatite, which limited their participation in consecutive adsorption processes. This study contributes to the optimization of the recycling and reuse of bone char for fluoride removal from water to reduce the operating defluoridation costs, thus enhancing the application of this technology in low-income areas where fluorinated water represents a threat to public health.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8378162\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8378162","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

饮用水中高浓度的氟化物对公众健康构成威胁,因此,需要采取有效和可持续的方法来改善水质,主要是在发展中国家和低收入国家。研究了NaOH再生骨炭对氟的吸附热力学。详细分析了使用不同NaOH浓度时氟吸附/解吸循环的次数、它们对骨炭性能和表面化学的影响,并使用统计物理理论对吸附机理进行了建模。结果显示0.075 mol/L NaOH在5次吸附/解吸循环中均能有效地恢复骨炭的脱氟性能,再生效率高于90%。经过10次吸附/解吸循环后,骨炭再生效率下降了64%,最大氟化物吸附能力为0.18 mmol/g。NaOH通过该吸附剂中包含的羟基磷灰石官能团恢复了用于氟阴离子配体交换的骨焦表面性质。据计算,大约0.25–0.46 再生骨炭样品的mmol/g羟基磷灰石配体交换位点可能参与氟的吸附,这也是一种单配体机制。在再生周期中,骨炭的脱氟性能降低归因于配体交换能力的降低以及羟基磷灰石的一些官能团的失活和阻断,这限制了它们参与连续吸附过程。这项研究有助于优化骨炭的回收和再利用,以降低操作脱氟成本,从而加强这项技术在低收入地区的应用,在这些地区,氟化水对公众健康构成威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regeneration Analysis of Bone Char Used in Water Defluoridation: Chemical Desorption Route, Surface Chemistry Analysis and Modeling
High concentrations of fluoride (F−) in drinking water represent a public health threat, and consequently, effective and sustainable methods are required to improve the water quality, mainly in developing and low-income countries. This study focused on the thermodynamics of fluoride adsorption on bone char regenerated with NaOH for water defluoridation. A detailed analysis of the number of fluoride adsorption/desorption cycles, their impact on the performance and surface chemistry of bone char using different NaOH concentrations, and modeling of the adsorption mechanism using statistical physics theory was carried out. The results showed that 0.075 mol/L NaOH was effective in recuperating the defluoridation properties of bone char with a regeneration efficiency higher than 90% during five adsorption/desorption cycles. Bone char regeneration efficiency decreased up to 64% after ten adsorption/desorption cycles with a maximum fluoride adsorption capacity of 0.18 mmol/g. NaOH restored the bone char surface properties for ligand exchange of the fluoride anions via the hydroxyapatite functionalities contained in this adsorbent. It was calculated that around 0.25–0.46 mmol/g hydroxyapatite ligand exchange sites of regenerated bone char samples could be involved in the fluoride adsorption, which was also expected to be a mono-ligand mechanism. The reduction in defluoridation properties of bone char during the regeneration cycles was attributed to the decrease in the ligand exchange capacity as well as the deactivation and blocking of some functional groups of hydroxyapatite, which limited their participation in consecutive adsorption processes. This study contributes to the optimization of the recycling and reuse of bone char for fluoride removal from water to reduce the operating defluoridation costs, thus enhancing the application of this technology in low-income areas where fluorinated water represents a threat to public health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Chemical Engineering
International Journal of Chemical Engineering Chemical Engineering-General Chemical Engineering
CiteScore
4.00
自引率
3.70%
发文量
95
审稿时长
14 weeks
期刊介绍: International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures. As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
A Review of Stochastic Optimization Algorithms Applied in Food Engineering Analysis Study of Available Alternatives for Mitigation of Aromatic Hydrocarbon Emissions from a Glycol Dehydration Unit Effective Removal of Ibuprofen from Aqueous Solution Using Cationic Surface-Active Agents in Dissolved Air-Flotation Process Effect of inside Surface Baffle Conditions on Just Drawdown Impeller Rotational Speed A Study on the Valorization of Rice Straw into Different Value-Added Products and Biofuels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1