一种改进的用于语义物联网的脉冲耦合神经网络模型

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS Digital Communications and Networks Pub Date : 2024-06-01 DOI:10.1016/j.dcan.2023.06.010
Rong Ma , Zhen Zhang , Yide Ma , Xiping Hu , Edith C.H. Ngai , Victor C.M. Leung
{"title":"一种改进的用于语义物联网的脉冲耦合神经网络模型","authors":"Rong Ma ,&nbsp;Zhen Zhang ,&nbsp;Yide Ma ,&nbsp;Xiping Hu ,&nbsp;Edith C.H. Ngai ,&nbsp;Victor C.M. Leung","doi":"10.1016/j.dcan.2023.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the Internet of Things (IoT) has gradually developed applications such as collecting sensory data and building intelligent services, which has led to an explosion in mobile data traffic. Meanwhile, with the rapid development of artificial intelligence, semantic communication has attracted great attention as a new communication paradigm. However, for IoT devices, however, processing image information efficiently in real time is an essential task for the rapid transmission of semantic information. With the increase of model parameters in deep learning methods, the model inference time in sensor devices continues to increase. In contrast, the Pulse Coupled Neural Network (PCNN) has fewer parameters, making it more suitable for processing real-time scene tasks such as image segmentation, which lays the foundation for real-time, effective, and accurate image transmission. However, the parameters of PCNN are determined by trial and error, which limits its application. To overcome this limitation, an Improved Pulse Coupled Neural Networks (IPCNN) model is proposed in this work. The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons, and all its parameters are set adaptively, which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images. Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets. The IPCNN method achieves a better segmentation result without training, providing a new solution for the real-time transmission of image semantic information.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864823001165/pdfft?md5=f795291116f0f475cee878b8052f6d78&pid=1-s2.0-S2352864823001165-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An improved pulse coupled neural networks model for semantic IoT\",\"authors\":\"Rong Ma ,&nbsp;Zhen Zhang ,&nbsp;Yide Ma ,&nbsp;Xiping Hu ,&nbsp;Edith C.H. Ngai ,&nbsp;Victor C.M. Leung\",\"doi\":\"10.1016/j.dcan.2023.06.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the Internet of Things (IoT) has gradually developed applications such as collecting sensory data and building intelligent services, which has led to an explosion in mobile data traffic. Meanwhile, with the rapid development of artificial intelligence, semantic communication has attracted great attention as a new communication paradigm. However, for IoT devices, however, processing image information efficiently in real time is an essential task for the rapid transmission of semantic information. With the increase of model parameters in deep learning methods, the model inference time in sensor devices continues to increase. In contrast, the Pulse Coupled Neural Network (PCNN) has fewer parameters, making it more suitable for processing real-time scene tasks such as image segmentation, which lays the foundation for real-time, effective, and accurate image transmission. However, the parameters of PCNN are determined by trial and error, which limits its application. To overcome this limitation, an Improved Pulse Coupled Neural Networks (IPCNN) model is proposed in this work. The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons, and all its parameters are set adaptively, which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images. Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets. The IPCNN method achieves a better segmentation result without training, providing a new solution for the real-time transmission of image semantic information.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001165/pdfft?md5=f795291116f0f475cee878b8052f6d78&pid=1-s2.0-S2352864823001165-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001165\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001165","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,物联网(IoT)逐渐发展出收集感知数据、构建智能服务等应用,导致移动数据流量激增。同时,随着人工智能的快速发展,语义通信作为一种新的通信范式备受关注。然而,对于物联网设备来说,实时高效地处理图像信息是快速传输语义信息的必要任务。随着深度学习方法中模型参数的增加,传感器设备中的模型推理时间也在不断增加。相比之下,脉冲耦合神经网络(PCNN)的参数较少,更适合处理图像分割等实时场景任务,为实时、有效、准确地传输图像奠定了基础。然而,PCNN 的参数是通过试错确定的,这限制了它的应用。为了克服这一局限,本文提出了改进脉冲耦合神经网络(IPCNN)模型。IPCNN 构建了输入图像的静态属性与神经元动态属性之间的联系,其所有参数都是自适应设置的,避免了传统方法中手动设置的不便,提高了参数对不同类型图像的适应性。在 Matlab 和伯克利分割数据集的灰度图像和自然图像上的实验分割结果证明了所提出的 IPCNN 自适应参数设置方法的有效性和高效性。IPCNN 方法无需训练即可获得较好的分割效果,为图像语义信息的实时传输提供了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved pulse coupled neural networks model for semantic IoT

In recent years, the Internet of Things (IoT) has gradually developed applications such as collecting sensory data and building intelligent services, which has led to an explosion in mobile data traffic. Meanwhile, with the rapid development of artificial intelligence, semantic communication has attracted great attention as a new communication paradigm. However, for IoT devices, however, processing image information efficiently in real time is an essential task for the rapid transmission of semantic information. With the increase of model parameters in deep learning methods, the model inference time in sensor devices continues to increase. In contrast, the Pulse Coupled Neural Network (PCNN) has fewer parameters, making it more suitable for processing real-time scene tasks such as image segmentation, which lays the foundation for real-time, effective, and accurate image transmission. However, the parameters of PCNN are determined by trial and error, which limits its application. To overcome this limitation, an Improved Pulse Coupled Neural Networks (IPCNN) model is proposed in this work. The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons, and all its parameters are set adaptively, which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images. Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets. The IPCNN method achieves a better segmentation result without training, providing a new solution for the real-time transmission of image semantic information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
期刊最新文献
Editorial Board Scheduling optimization for UAV communication coverage using virtual force-based PSO model Hybrid millimeter wave heterogeneous networks with spatially correlated user equipment A novel hybrid authentication protocol utilizing lattice-based cryptography for IoT devices in fog networks Data-driven human and bot recognition from web activity logs based on hybrid learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1