6G增强型超可靠和低延迟服务的机器学习

IF 10.9 1区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Wireless Communications Pub Date : 2023-04-01 DOI:10.1109/MWC.006.2200407
Yan Liu, Yansha Deng, A. Nallanathan, Jinhong Yuan
{"title":"6G增强型超可靠和低延迟服务的机器学习","authors":"Yan Liu, Yansha Deng, A. Nallanathan, Jinhong Yuan","doi":"10.1109/MWC.006.2200407","DOIUrl":null,"url":null,"abstract":"Ultra-reliable and low-latency communications (URLLC), as one of the major communication services of the fifth-generation (5G) and the sixth-generation (6G) cellular networks, is critical to supporting a variety of emerging mission-critical applications. However, the modern mobile networks could not satisfy the latency and reliability requirements, as well as other Quality of Service (QoS) requirements, including spectrum efficiency, energy efficiency, capacity, jitter, round-trip delay, network coverage, etc. To fulfill diverse QoS requirements for various URLLC applications, machine learning (ML) solutions are promising for future 6G networks. In this article, we first categorize the 6G URLLC vision into three connectivity characteristics, including ubiquitous connectivity, deep connectivity, and holographic connectivity, with their corresponding unique QoS requirements. We then identify potential challenges in meeting these connectivity requirements, and investigate promising ML solutions to achieve the intelligent connectivity for the 6G URLLC service. We further discuss how to implement the ML algorithms to guarantee the QoS requirements for different URLLC scenarios, including mobility URLLC, massive URLLC, and broadband URLLC. Finally, we present a case study of downlink URLLC channel access problems, solved by centralized deep reinforcement learning (CDRL) and federated DRL (FDRL), respectively, which validates the effectiveness of machine learning for URLLC services.","PeriodicalId":13342,"journal":{"name":"IEEE Wireless Communications","volume":"30 1","pages":"48-54"},"PeriodicalIF":10.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Machine Learning for 6G Enhanced Ultra-Reliable and Low-Latency Services\",\"authors\":\"Yan Liu, Yansha Deng, A. Nallanathan, Jinhong Yuan\",\"doi\":\"10.1109/MWC.006.2200407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-reliable and low-latency communications (URLLC), as one of the major communication services of the fifth-generation (5G) and the sixth-generation (6G) cellular networks, is critical to supporting a variety of emerging mission-critical applications. However, the modern mobile networks could not satisfy the latency and reliability requirements, as well as other Quality of Service (QoS) requirements, including spectrum efficiency, energy efficiency, capacity, jitter, round-trip delay, network coverage, etc. To fulfill diverse QoS requirements for various URLLC applications, machine learning (ML) solutions are promising for future 6G networks. In this article, we first categorize the 6G URLLC vision into three connectivity characteristics, including ubiquitous connectivity, deep connectivity, and holographic connectivity, with their corresponding unique QoS requirements. We then identify potential challenges in meeting these connectivity requirements, and investigate promising ML solutions to achieve the intelligent connectivity for the 6G URLLC service. We further discuss how to implement the ML algorithms to guarantee the QoS requirements for different URLLC scenarios, including mobility URLLC, massive URLLC, and broadband URLLC. Finally, we present a case study of downlink URLLC channel access problems, solved by centralized deep reinforcement learning (CDRL) and federated DRL (FDRL), respectively, which validates the effectiveness of machine learning for URLLC services.\",\"PeriodicalId\":13342,\"journal\":{\"name\":\"IEEE Wireless Communications\",\"volume\":\"30 1\",\"pages\":\"48-54\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MWC.006.2200407\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MWC.006.2200407","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 9

摘要

超可靠和低延迟通信(URLLC)作为第五代(5G)和第六代(6G)蜂窝网络的主要通信服务之一,对于支持各种新兴的关键任务应用至关重要。然而,现代移动网络无法满足时延和可靠性要求,以及其他服务质量(QoS)要求,包括频谱效率、能效、容量、抖动、往返延迟、网络覆盖等。为了满足各种URLLC应用的不同QoS需求,机器学习(ML)解决方案在未来的6G网络中很有前景。在本文中,我们首先将6G URLLC愿景分为三种连接特征,包括泛在连接、深度连接和全息连接,并具有相应的独特QoS要求。然后,我们确定了满足这些连接要求的潜在挑战,并研究了有前途的ML解决方案,以实现6G URLLC服务的智能连接。我们进一步讨论了如何实现ML算法来保证不同URLLC场景的QoS需求,包括移动性URLLC、大规模URLLC和宽带URLLC。最后,我们给出了一个下行URLLC通道访问问题的案例研究,分别通过集中式深度强化学习(CDRL)和联邦DRL (FDRL)解决,验证了机器学习对URLLC服务的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning for 6G Enhanced Ultra-Reliable and Low-Latency Services
Ultra-reliable and low-latency communications (URLLC), as one of the major communication services of the fifth-generation (5G) and the sixth-generation (6G) cellular networks, is critical to supporting a variety of emerging mission-critical applications. However, the modern mobile networks could not satisfy the latency and reliability requirements, as well as other Quality of Service (QoS) requirements, including spectrum efficiency, energy efficiency, capacity, jitter, round-trip delay, network coverage, etc. To fulfill diverse QoS requirements for various URLLC applications, machine learning (ML) solutions are promising for future 6G networks. In this article, we first categorize the 6G URLLC vision into three connectivity characteristics, including ubiquitous connectivity, deep connectivity, and holographic connectivity, with their corresponding unique QoS requirements. We then identify potential challenges in meeting these connectivity requirements, and investigate promising ML solutions to achieve the intelligent connectivity for the 6G URLLC service. We further discuss how to implement the ML algorithms to guarantee the QoS requirements for different URLLC scenarios, including mobility URLLC, massive URLLC, and broadband URLLC. Finally, we present a case study of downlink URLLC channel access problems, solved by centralized deep reinforcement learning (CDRL) and federated DRL (FDRL), respectively, which validates the effectiveness of machine learning for URLLC services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Wireless Communications
IEEE Wireless Communications 工程技术-电信学
CiteScore
24.20
自引率
1.60%
发文量
183
审稿时长
6-12 weeks
期刊介绍: IEEE Wireless Communications is tailored for professionals within the communications and networking communities. It addresses technical and policy issues associated with personalized, location-independent communications across various media and protocol layers. Encompassing both wired and wireless communications, the magazine explores the intersection of computing, the mobility of individuals, communicating devices, and personalized services. Every issue of this interdisciplinary publication presents high-quality articles delving into the revolutionary technological advances in personal, location-independent communications, and computing. IEEE Wireless Communications provides an insightful platform for individuals engaged in these dynamic fields, offering in-depth coverage of significant developments in the realm of communication technology.
期刊最新文献
Federated Large Language Model: Solutions, Challenges and Future Directions Integrated Communication, Navigation, and Remote Sensing in LEO Networks with Vehicular Applications Cooperative ISAC Networks: Opportunities and Challenges Space-Air-Ground Integrated Networks with Task-Driven Connected Intelligence DRL Enhanced Reconfigurable Intelligent Surface for Efficient Air-Ground Vehicle Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1