{"title":"区间截尾数据的参数比例风险回归模型的拟合优度检验","authors":"R. Sakurai, S. Hattori","doi":"10.1080/24709360.2018.1529347","DOIUrl":null,"url":null,"abstract":"ABSTRACT Interval-censored data are common in medical research. Fully parametric models provide simple and efficient inference for the estimation of survival functions using interval-censored observations. Inference based on a parametric regression model requires the complete specification of the probability density function, and therefore, correctly specifying the model is crucial, while the regression diagnostic is a very important step. However, regression diagnostic methods for use with the interval-censored data have not been completely developed. Here, we developed a model-checking procedure based on the cumulative martingale residuals for the interval-censored observations. We employed the conditional expectation of residuals for the diagnostics, because the data showing the exact failure time cannot be obtained for the interval-censoring analyses, and developed the formal resampling-based supremum-type test and graphical model-checking techniques. A simulation study demonstrated an excellent performance of the proposed method during the detection of a misspecified functional form of covariates in the finite sample. Furthermore, we used this method for the analysis of the medical checkup data obtained in Japan.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"2 1","pages":"115 - 131"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2018.1529347","citationCount":"0","resultStr":"{\"title\":\"Goodness-of-fit test for the parametric proportional hazard regression model with interval-censored data\",\"authors\":\"R. Sakurai, S. Hattori\",\"doi\":\"10.1080/24709360.2018.1529347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Interval-censored data are common in medical research. Fully parametric models provide simple and efficient inference for the estimation of survival functions using interval-censored observations. Inference based on a parametric regression model requires the complete specification of the probability density function, and therefore, correctly specifying the model is crucial, while the regression diagnostic is a very important step. However, regression diagnostic methods for use with the interval-censored data have not been completely developed. Here, we developed a model-checking procedure based on the cumulative martingale residuals for the interval-censored observations. We employed the conditional expectation of residuals for the diagnostics, because the data showing the exact failure time cannot be obtained for the interval-censoring analyses, and developed the formal resampling-based supremum-type test and graphical model-checking techniques. A simulation study demonstrated an excellent performance of the proposed method during the detection of a misspecified functional form of covariates in the finite sample. Furthermore, we used this method for the analysis of the medical checkup data obtained in Japan.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"2 1\",\"pages\":\"115 - 131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2018.1529347\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2018.1529347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2018.1529347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Goodness-of-fit test for the parametric proportional hazard regression model with interval-censored data
ABSTRACT Interval-censored data are common in medical research. Fully parametric models provide simple and efficient inference for the estimation of survival functions using interval-censored observations. Inference based on a parametric regression model requires the complete specification of the probability density function, and therefore, correctly specifying the model is crucial, while the regression diagnostic is a very important step. However, regression diagnostic methods for use with the interval-censored data have not been completely developed. Here, we developed a model-checking procedure based on the cumulative martingale residuals for the interval-censored observations. We employed the conditional expectation of residuals for the diagnostics, because the data showing the exact failure time cannot be obtained for the interval-censoring analyses, and developed the formal resampling-based supremum-type test and graphical model-checking techniques. A simulation study demonstrated an excellent performance of the proposed method during the detection of a misspecified functional form of covariates in the finite sample. Furthermore, we used this method for the analysis of the medical checkup data obtained in Japan.