{"title":"利用深度连体网络进行新生儿疾病检测的热像图分类","authors":"Saim Ervural, M. Ceylan","doi":"10.1080/17686733.2021.2010379","DOIUrl":null,"url":null,"abstract":"ABSTRACT Monitoring the body temperatures and evaluating the thermal asymmetry of newborns give an idea about neonatal diseases. Infrared thermography is a non-invasive, non-harmful, and non-contact modality that allows the monitoring of the body temperature distribution. Early diagnosis using a limited data set is extremely vital due to the high mortality rate in newborns and some difficulties in neonatal imaging. Thermography stands out as a useful tool in detecting neonatal diseases compared to other techniques. However, creating a thermogram database consisting of thousands of images from each class required by traditional artificial intelligence methods, is impossible due to the sensitivity of newborns. One of the meta-learning models that has recently gained success in applying limited data learning, especially one-shot, in various fields is Siamese neural networks. In this work, we perform a multi-class classification to provide pre-diagnosis to experts in disease detection using Siamese neural networks. By using two different optimisation techniques and data augmentation, critical diseases with only a few sample data are classified using the method tested in two- and three-class evaluation approaches. The results based on the disease type achieve 99.4% accuracy in infection diseases and 96.4% oesophageal atresia, 97.4% in intestinal atresia, and 94.02% in necrotising enterocolitis.","PeriodicalId":54525,"journal":{"name":"Quantitative Infrared Thermography Journal","volume":"19 1","pages":"312 - 330"},"PeriodicalIF":3.7000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Thermogram classification using deep siamese network for neonatal disease detection with limited data\",\"authors\":\"Saim Ervural, M. Ceylan\",\"doi\":\"10.1080/17686733.2021.2010379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Monitoring the body temperatures and evaluating the thermal asymmetry of newborns give an idea about neonatal diseases. Infrared thermography is a non-invasive, non-harmful, and non-contact modality that allows the monitoring of the body temperature distribution. Early diagnosis using a limited data set is extremely vital due to the high mortality rate in newborns and some difficulties in neonatal imaging. Thermography stands out as a useful tool in detecting neonatal diseases compared to other techniques. However, creating a thermogram database consisting of thousands of images from each class required by traditional artificial intelligence methods, is impossible due to the sensitivity of newborns. One of the meta-learning models that has recently gained success in applying limited data learning, especially one-shot, in various fields is Siamese neural networks. In this work, we perform a multi-class classification to provide pre-diagnosis to experts in disease detection using Siamese neural networks. By using two different optimisation techniques and data augmentation, critical diseases with only a few sample data are classified using the method tested in two- and three-class evaluation approaches. The results based on the disease type achieve 99.4% accuracy in infection diseases and 96.4% oesophageal atresia, 97.4% in intestinal atresia, and 94.02% in necrotising enterocolitis.\",\"PeriodicalId\":54525,\"journal\":{\"name\":\"Quantitative Infrared Thermography Journal\",\"volume\":\"19 1\",\"pages\":\"312 - 330\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Infrared Thermography Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17686733.2021.2010379\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Infrared Thermography Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17686733.2021.2010379","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Thermogram classification using deep siamese network for neonatal disease detection with limited data
ABSTRACT Monitoring the body temperatures and evaluating the thermal asymmetry of newborns give an idea about neonatal diseases. Infrared thermography is a non-invasive, non-harmful, and non-contact modality that allows the monitoring of the body temperature distribution. Early diagnosis using a limited data set is extremely vital due to the high mortality rate in newborns and some difficulties in neonatal imaging. Thermography stands out as a useful tool in detecting neonatal diseases compared to other techniques. However, creating a thermogram database consisting of thousands of images from each class required by traditional artificial intelligence methods, is impossible due to the sensitivity of newborns. One of the meta-learning models that has recently gained success in applying limited data learning, especially one-shot, in various fields is Siamese neural networks. In this work, we perform a multi-class classification to provide pre-diagnosis to experts in disease detection using Siamese neural networks. By using two different optimisation techniques and data augmentation, critical diseases with only a few sample data are classified using the method tested in two- and three-class evaluation approaches. The results based on the disease type achieve 99.4% accuracy in infection diseases and 96.4% oesophageal atresia, 97.4% in intestinal atresia, and 94.02% in necrotising enterocolitis.
期刊介绍:
The Quantitative InfraRed Thermography Journal (QIRT) provides a forum for industry and academia to discuss the latest developments of instrumentation, theoretical and experimental practices, data reduction, and image processing related to infrared thermography.