局部平稳乘性波动率模型

IF 2.9 2区 数学 Q1 ECONOMICS Journal of Business & Economic Statistics Pub Date : 2022-02-01 DOI:10.1080/07350015.2022.2036612
Christopher Walsh, M. Vogt
{"title":"局部平稳乘性波动率模型","authors":"Christopher Walsh, M. Vogt","doi":"10.1080/07350015.2022.2036612","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study a semiparametric multiplicative volatility model, which splits up into a nonparametric part and a parametric GARCH component. The nonparametric part is modeled as a product of a deterministic time trend component and of further components that depend on stochastic regressors. We propose a two-step procedure to estimate the model. To estimate the nonparametric components, we transform the model and apply a backfitting procedure. The GARCH parameters are estimated in a second step via quasi maximum likelihood. We show consistency and asymptotic normality of our estimators. Our results are obtained using mixing properties and local stationarity. We illustrate our method using financial data. Finally, a small simulation study illustrates a substantial bias in the GARCH parameter estimates when omitting the stochastic regressors.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"41 1","pages":"497 - 508"},"PeriodicalIF":2.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally Stationary Multiplicative Volatility Modeling\",\"authors\":\"Christopher Walsh, M. Vogt\",\"doi\":\"10.1080/07350015.2022.2036612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study a semiparametric multiplicative volatility model, which splits up into a nonparametric part and a parametric GARCH component. The nonparametric part is modeled as a product of a deterministic time trend component and of further components that depend on stochastic regressors. We propose a two-step procedure to estimate the model. To estimate the nonparametric components, we transform the model and apply a backfitting procedure. The GARCH parameters are estimated in a second step via quasi maximum likelihood. We show consistency and asymptotic normality of our estimators. Our results are obtained using mixing properties and local stationarity. We illustrate our method using financial data. Finally, a small simulation study illustrates a substantial bias in the GARCH parameter estimates when omitting the stochastic regressors.\",\"PeriodicalId\":50247,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"41 1\",\"pages\":\"497 - 508\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2036612\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2036612","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们研究了一个半参数乘性波动率模型,该模型分为非参数部分和参数GARCH分量。非参数部分被建模为确定性时间趋势分量和依赖于随机回归的其他分量的乘积。我们提出了一个两步程序来估计模型。为了估计非参数分量,我们对模型进行了变换,并应用了反拟合过程。GARCH参数在第二步骤中通过准最大似然来估计。我们给出了估计量的一致性和渐近正态性。我们的结果是利用混合性质和局部平稳性得到的。我们用财务数据来说明我们的方法。最后,一项小型模拟研究表明,当省略随机回归时,GARCH参数估计存在显著偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Locally Stationary Multiplicative Volatility Modeling
Abstract In this article, we study a semiparametric multiplicative volatility model, which splits up into a nonparametric part and a parametric GARCH component. The nonparametric part is modeled as a product of a deterministic time trend component and of further components that depend on stochastic regressors. We propose a two-step procedure to estimate the model. To estimate the nonparametric components, we transform the model and apply a backfitting procedure. The GARCH parameters are estimated in a second step via quasi maximum likelihood. We show consistency and asymptotic normality of our estimators. Our results are obtained using mixing properties and local stationarity. We illustrate our method using financial data. Finally, a small simulation study illustrates a substantial bias in the GARCH parameter estimates when omitting the stochastic regressors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
期刊最新文献
A Ridge-Regularized Jackknifed Anderson-Rubin Test. Efficient and Robust Estimation of the Generalized LATE Model Modeling and Forecasting Macroeconomic Downside Risk* Causal inference under outcome-based sampling with monotonicity assumptions Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1