{"title":"轴压冷弯型钢唇形槽钢构件截面尺寸优化","authors":"V. Yurchenko, A. Perelmuter, I. Peleshko","doi":"10.2478/cee-2022-0044","DOIUrl":null,"url":null,"abstract":"Abstract A parametric optimization problem of cross-sectional sizes for cold-formed steel lipped channel structural members subjected to axial compression has been considered by the paper. An optimization problem is formulated to define optimum cross-sectional sizes of cold-formed structural member taking into account post-buckling behavior and structural requirements when stripe width, profile thickness and profile type are constant and specified in advance. Maximization of the load-carrying capacity of the cold-formed structural member has been assumed as purpose function. As optimization results cold-formed steel lipped channels with optimum dimensions have been obtained. Steel lipped channels structural members with the optimum cross-sectional dimensions have higher load-carrying capacities at the same material consumption (stripe width) comparing with the ones proposed by the manufacturer when the material consumption.","PeriodicalId":42034,"journal":{"name":"Civil and Environmental Engineering","volume":"18 1","pages":"472 - 481"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Section Size Optimization of Cold-Formed Steel Lipped Channel Structural Members Subjected to Axial Compression\",\"authors\":\"V. Yurchenko, A. Perelmuter, I. Peleshko\",\"doi\":\"10.2478/cee-2022-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A parametric optimization problem of cross-sectional sizes for cold-formed steel lipped channel structural members subjected to axial compression has been considered by the paper. An optimization problem is formulated to define optimum cross-sectional sizes of cold-formed structural member taking into account post-buckling behavior and structural requirements when stripe width, profile thickness and profile type are constant and specified in advance. Maximization of the load-carrying capacity of the cold-formed structural member has been assumed as purpose function. As optimization results cold-formed steel lipped channels with optimum dimensions have been obtained. Steel lipped channels structural members with the optimum cross-sectional dimensions have higher load-carrying capacities at the same material consumption (stripe width) comparing with the ones proposed by the manufacturer when the material consumption.\",\"PeriodicalId\":42034,\"journal\":{\"name\":\"Civil and Environmental Engineering\",\"volume\":\"18 1\",\"pages\":\"472 - 481\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cee-2022-0044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cee-2022-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Cross-Section Size Optimization of Cold-Formed Steel Lipped Channel Structural Members Subjected to Axial Compression
Abstract A parametric optimization problem of cross-sectional sizes for cold-formed steel lipped channel structural members subjected to axial compression has been considered by the paper. An optimization problem is formulated to define optimum cross-sectional sizes of cold-formed structural member taking into account post-buckling behavior and structural requirements when stripe width, profile thickness and profile type are constant and specified in advance. Maximization of the load-carrying capacity of the cold-formed structural member has been assumed as purpose function. As optimization results cold-formed steel lipped channels with optimum dimensions have been obtained. Steel lipped channels structural members with the optimum cross-sectional dimensions have higher load-carrying capacities at the same material consumption (stripe width) comparing with the ones proposed by the manufacturer when the material consumption.