基于预成形reram的防篡改puf:方法和实验验证

IF 4.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers in Nanotechnology Pub Date : 2022-11-03 DOI:10.3389/fnano.2022.1055545
Taylor Wilson, B. Cambou
{"title":"基于预成形reram的防篡改puf:方法和实验验证","authors":"Taylor Wilson, B. Cambou","doi":"10.3389/fnano.2022.1055545","DOIUrl":null,"url":null,"abstract":"In this paper, we present the characterization of pre-formed resistive random access memories to design physical unclonable functions and experimentally validate inherent properties such as tamper sensitivity and a self-destroy mode. The physical unclonable functions were tested for repetitive use, temperature effects, and aging. The variations during successive response generation cycles and drift rates are quantized to explore their reliability. We define tamper-sensitivity as the ability to detect tampering attacks. To establish tamper sensitivity, the cells were characterized for higher current sweeps, and the injected current at which they break down is extracted and analyzed to determine suitable operating ranges. Our experimental results show that at least 91% of the cells can generate keys protected by the scheme, while 22% of the sensing elements are triggered. Finally, the cells were characterized for high Voltage sweeps to be able to destroy the physical unclonable functions on-demand when tampering activity is detected. A fixed Voltage of 1.9 V is enough to destroy the entire array.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tamper-sensitive pre-formed ReRAM-based PUFs: Methods and experimental validation\",\"authors\":\"Taylor Wilson, B. Cambou\",\"doi\":\"10.3389/fnano.2022.1055545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the characterization of pre-formed resistive random access memories to design physical unclonable functions and experimentally validate inherent properties such as tamper sensitivity and a self-destroy mode. The physical unclonable functions were tested for repetitive use, temperature effects, and aging. The variations during successive response generation cycles and drift rates are quantized to explore their reliability. We define tamper-sensitivity as the ability to detect tampering attacks. To establish tamper sensitivity, the cells were characterized for higher current sweeps, and the injected current at which they break down is extracted and analyzed to determine suitable operating ranges. Our experimental results show that at least 91% of the cells can generate keys protected by the scheme, while 22% of the sensing elements are triggered. Finally, the cells were characterized for high Voltage sweeps to be able to destroy the physical unclonable functions on-demand when tampering activity is detected. A fixed Voltage of 1.9 V is enough to destroy the entire array.\",\"PeriodicalId\":34432,\"journal\":{\"name\":\"Frontiers in Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnano.2022.1055545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2022.1055545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了预先形成的电阻随机存取存储器的特性,以设计物理不可克隆功能,并通过实验验证其固有特性,如篡改灵敏度和自毁模式。测试了重复使用、温度影响和老化的物理不可克隆功能。在连续的响应产生周期和漂移率的变化是量化的,以探讨其可靠性。我们将篡改敏感性定义为检测篡改攻击的能力。为了建立篡改灵敏度,对细胞进行了大电流扫描,并提取和分析了细胞击穿时的注入电流,以确定合适的工作范围。实验结果表明,至少91%的单元可以产生密钥,而22%的传感元件被触发。最后,当检测到篡改活动时,高电压扫描能够按需破坏物理不可克隆功能。1.9 V的固定电压足以破坏整个阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tamper-sensitive pre-formed ReRAM-based PUFs: Methods and experimental validation
In this paper, we present the characterization of pre-formed resistive random access memories to design physical unclonable functions and experimentally validate inherent properties such as tamper sensitivity and a self-destroy mode. The physical unclonable functions were tested for repetitive use, temperature effects, and aging. The variations during successive response generation cycles and drift rates are quantized to explore their reliability. We define tamper-sensitivity as the ability to detect tampering attacks. To establish tamper sensitivity, the cells were characterized for higher current sweeps, and the injected current at which they break down is extracted and analyzed to determine suitable operating ranges. Our experimental results show that at least 91% of the cells can generate keys protected by the scheme, while 22% of the sensing elements are triggered. Finally, the cells were characterized for high Voltage sweeps to be able to destroy the physical unclonable functions on-demand when tampering activity is detected. A fixed Voltage of 1.9 V is enough to destroy the entire array.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Nanotechnology
Frontiers in Nanotechnology Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
96
审稿时长
13 weeks
期刊最新文献
Interface-enhanced conductivities in surfactant-mediated, solution-grown ionic crystalline complexes Formation of two-dimensional laser-induced periodic surface structures on titanium by GHz burst mode femtosecond laser pulses Defects go green: using defects in nanomaterials for renewable energy and environmental sustainability Current status and applications of photovoltaic technology in wearable sensors: a review Single-layer MoS2 solid-state nanopores for coarse-grained sequencing of proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1