Arya Das, Benjamin Raj, M. Mohapatra, S. M. Andersen, S. Basu
{"title":"过渡金属硫化物基电极材料在超级电容器/超级图案方面的性能和未来方向","authors":"Arya Das, Benjamin Raj, M. Mohapatra, S. M. Andersen, S. Basu","doi":"10.1002/wene.414","DOIUrl":null,"url":null,"abstract":"Advanced and sustainable energy storage technologies with tailorable electrochemically active materials platform are the present research dominancy toward an urgent global need for electrical vehicles and portable electronics. Moreover, intensive efforts are given to screen the widely available low‐cost materials with a focus to achieve superior electrochemical performance for the fabrication of energy storage devices. Transition metal‐based sulfides have prodigious technological credibility due to their compositional‐ and morphological‐based tunable electrochemical properties. Here the significant advances and present state‐of‐the‐art of such assured materials in different energy storage devices are discussed. Assessment of the intensive work invested in the progress of transition metals such as V, Mn, Fe, Co, Ni, Cu, Zn Mo, and W based sulfides along with their structural/compositional engineering and addressable aspects for electrochemical performance enhancement are highlighted. Additionally, discussions on critical strategies for decisive mechanistic and kinetic views for charge storage phenomena with key challenges, such as volume expansions, low stability, and sluggish kinetics, are discussed. Finally, the challenges and future prospects demands for strategic approaches of such materials with prominence in futuristic directions are concluded.","PeriodicalId":48766,"journal":{"name":"Wiley Interdisciplinary Reviews-Energy and Environment","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wene.414","citationCount":"37","resultStr":"{\"title\":\"Performance and future directions of transition metal sulfide‐based electrode materials towards supercapacitor/supercapattery\",\"authors\":\"Arya Das, Benjamin Raj, M. Mohapatra, S. M. Andersen, S. Basu\",\"doi\":\"10.1002/wene.414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced and sustainable energy storage technologies with tailorable electrochemically active materials platform are the present research dominancy toward an urgent global need for electrical vehicles and portable electronics. Moreover, intensive efforts are given to screen the widely available low‐cost materials with a focus to achieve superior electrochemical performance for the fabrication of energy storage devices. Transition metal‐based sulfides have prodigious technological credibility due to their compositional‐ and morphological‐based tunable electrochemical properties. Here the significant advances and present state‐of‐the‐art of such assured materials in different energy storage devices are discussed. Assessment of the intensive work invested in the progress of transition metals such as V, Mn, Fe, Co, Ni, Cu, Zn Mo, and W based sulfides along with their structural/compositional engineering and addressable aspects for electrochemical performance enhancement are highlighted. Additionally, discussions on critical strategies for decisive mechanistic and kinetic views for charge storage phenomena with key challenges, such as volume expansions, low stability, and sluggish kinetics, are discussed. Finally, the challenges and future prospects demands for strategic approaches of such materials with prominence in futuristic directions are concluded.\",\"PeriodicalId\":48766,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wene.414\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Energy and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/wene.414\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Energy and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/wene.414","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Performance and future directions of transition metal sulfide‐based electrode materials towards supercapacitor/supercapattery
Advanced and sustainable energy storage technologies with tailorable electrochemically active materials platform are the present research dominancy toward an urgent global need for electrical vehicles and portable electronics. Moreover, intensive efforts are given to screen the widely available low‐cost materials with a focus to achieve superior electrochemical performance for the fabrication of energy storage devices. Transition metal‐based sulfides have prodigious technological credibility due to their compositional‐ and morphological‐based tunable electrochemical properties. Here the significant advances and present state‐of‐the‐art of such assured materials in different energy storage devices are discussed. Assessment of the intensive work invested in the progress of transition metals such as V, Mn, Fe, Co, Ni, Cu, Zn Mo, and W based sulfides along with their structural/compositional engineering and addressable aspects for electrochemical performance enhancement are highlighted. Additionally, discussions on critical strategies for decisive mechanistic and kinetic views for charge storage phenomena with key challenges, such as volume expansions, low stability, and sluggish kinetics, are discussed. Finally, the challenges and future prospects demands for strategic approaches of such materials with prominence in futuristic directions are concluded.
期刊介绍:
Wiley Interdisciplinary Reviews: Energy and Environmentis a new type of review journal covering all aspects of energy technology, security and environmental impact.
Energy is one of the most critical resources for the welfare and prosperity of society. It also causes adverse environmental and societal effects, notably climate change which is the severest global problem in the modern age. Finding satisfactory solutions to the challenges ahead will need a linking of energy technology innovations, security, energy poverty, and environmental and climate impacts. The broad scope of energy issues demands collaboration between different disciplines of science and technology, and strong interaction between engineering, physical and life scientists, economists, sociologists and policy-makers.