Liang Xue, Jiabao Wang, Jiangxia Han, Minjing Yang, Mpoki Sam Mwasmwasa, Felix Nanguka
{"title":"基于递减曲线分析模型和生产数据的深度学习气井动态预测","authors":"Liang Xue, Jiabao Wang, Jiangxia Han, Minjing Yang, Mpoki Sam Mwasmwasa, Felix Nanguka","doi":"10.46690/ager.2023.06.03","DOIUrl":null,"url":null,"abstract":": The prediction of gas well performance is crucial for estimating the ultimate recovery rate of natural gas reservoirs. However, physics-based numerical simulation methods require a significant effort to build a robust model, while the decline curve analysis method used in this field is based on certain assumptions, hence its applications are limited due to the strict working conditions. In this work, a deep learning model driven jointly by the decline curve analysis model and production data is proposed for the production performance prediction of gas wells. Due to the time-series characteristics of gas well production data, the long short-term memory neural network is selected to establish the architecture of artificial intelligence. The existing decline curve analysis model is first implicitly incorporated into the training process of the neural network and then used to drive the neural network construction along with the actual gas well production historical data. By applying the proposed innovative model to analyze the conventional and tight gas well performance predictions based on field data, it is demonstrated that the proposed long short-term memory neural network deep learning model driven jointly by the decline curve analysis model and production data can effectively improve the interpretability and predictive ability of the traditional long short-term memory neural network model driven by production data alone. Compared with the data-driven model, the jointly driven model can reduce the mean absolute error by 42.90% and 13.65% for a tight gas well and a carbonate gas well, respectively.","PeriodicalId":36335,"journal":{"name":"Advances in Geo-Energy Research","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas well performance prediction using deep learning jointly driven by decline curve analysis model and production data\",\"authors\":\"Liang Xue, Jiabao Wang, Jiangxia Han, Minjing Yang, Mpoki Sam Mwasmwasa, Felix Nanguka\",\"doi\":\"10.46690/ager.2023.06.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The prediction of gas well performance is crucial for estimating the ultimate recovery rate of natural gas reservoirs. However, physics-based numerical simulation methods require a significant effort to build a robust model, while the decline curve analysis method used in this field is based on certain assumptions, hence its applications are limited due to the strict working conditions. In this work, a deep learning model driven jointly by the decline curve analysis model and production data is proposed for the production performance prediction of gas wells. Due to the time-series characteristics of gas well production data, the long short-term memory neural network is selected to establish the architecture of artificial intelligence. The existing decline curve analysis model is first implicitly incorporated into the training process of the neural network and then used to drive the neural network construction along with the actual gas well production historical data. By applying the proposed innovative model to analyze the conventional and tight gas well performance predictions based on field data, it is demonstrated that the proposed long short-term memory neural network deep learning model driven jointly by the decline curve analysis model and production data can effectively improve the interpretability and predictive ability of the traditional long short-term memory neural network model driven by production data alone. Compared with the data-driven model, the jointly driven model can reduce the mean absolute error by 42.90% and 13.65% for a tight gas well and a carbonate gas well, respectively.\",\"PeriodicalId\":36335,\"journal\":{\"name\":\"Advances in Geo-Energy Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geo-Energy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46690/ager.2023.06.03\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geo-Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/ager.2023.06.03","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Gas well performance prediction using deep learning jointly driven by decline curve analysis model and production data
: The prediction of gas well performance is crucial for estimating the ultimate recovery rate of natural gas reservoirs. However, physics-based numerical simulation methods require a significant effort to build a robust model, while the decline curve analysis method used in this field is based on certain assumptions, hence its applications are limited due to the strict working conditions. In this work, a deep learning model driven jointly by the decline curve analysis model and production data is proposed for the production performance prediction of gas wells. Due to the time-series characteristics of gas well production data, the long short-term memory neural network is selected to establish the architecture of artificial intelligence. The existing decline curve analysis model is first implicitly incorporated into the training process of the neural network and then used to drive the neural network construction along with the actual gas well production historical data. By applying the proposed innovative model to analyze the conventional and tight gas well performance predictions based on field data, it is demonstrated that the proposed long short-term memory neural network deep learning model driven jointly by the decline curve analysis model and production data can effectively improve the interpretability and predictive ability of the traditional long short-term memory neural network model driven by production data alone. Compared with the data-driven model, the jointly driven model can reduce the mean absolute error by 42.90% and 13.65% for a tight gas well and a carbonate gas well, respectively.
Advances in Geo-Energy Researchnatural geo-energy (oil, gas, coal geothermal, and gas hydrate)-Geotechnical Engineering and Engineering Geology
CiteScore
12.30
自引率
8.50%
发文量
63
审稿时长
2~3 weeks
期刊介绍:
Advances in Geo-Energy Research is an interdisciplinary and international periodical committed to fostering interaction and multidisciplinary collaboration among scientific communities worldwide, spanning both industry and academia. Our journal serves as a platform for researchers actively engaged in the diverse fields of geo-energy systems, providing an academic medium for the exchange of knowledge and ideas. Join us in advancing the frontiers of geo-energy research through collaboration and shared expertise.