A. Lowe, A. Diefendorf, K. Schlanser, J. Super, C. K. West, D. Greenwood
{"title":"加拿大不列颠哥伦比亚奥卡纳甘高地早始新世沉积动力学与化石保存&来自有机地球化学的见解","authors":"A. Lowe, A. Diefendorf, K. Schlanser, J. Super, C. K. West, D. Greenwood","doi":"10.2110/palo.2021.007","DOIUrl":null,"url":null,"abstract":"Abstract: The early Eocene Okanagan Highland fossil sites of Washington (USA) and British Columbia (Canada) contain exquisitely preserved plant and insect fossils that showcase a critical time and place in the evolution of the Northern Hemisphere temperate deciduous biome. A comprehensive understanding of the dynamics of fossil deposition and preservation at these sites is not fully resolved but is critical for reliable reconstructions of these ancient forests. To expand on previous interpretations (e.g., deep, stratified, anoxic lake bottoms) and address uncertainties about the environment of deposition (e.g., distance to shore, influence of diatoms), we analyzed sediment samples from three Okanagan Highland fossil sites—McAbee, Falkland, and Driftwood Canyon—for organic biomarkers, their stable carbon isotopic compositions, and glycerol dialkyl glycerol tetraethers (GDGTs; at McAbee only). Terpenoids suggest relative trends in gymnosperm abundance between sites that agree with prior macrofossil evidence, though absolute values may overestimate local gymnosperm abundance. A combination of biomarker evidence indicates a predominantly autochthonous aquatic source (e.g., diatoms) for organic matter in shale and mudstone samples, even contributing to long chain n-alkanes and likely to branched GDGTs, which are often assumed to be terrestrially sourced. In combination with biomarker evidence for anoxia and stratification, fossiliferous shales are interpreted to have been deposited offshore in deep and mesotrophic lakes that were thermally stratified with an anoxic hypolimnion, away from in-flowing tributaries, while a coal horizon at Driftwood Canyon was deposited in a shallower, eutrophic, anoxic wetland. Anoxic conditions likely minimized some degradation-based biases and promoted high quality fossil preservation. Deposition of sediment and fossil remains offshore and away from inflowing tributaries suggest fossil plants were locally sourced but highlights the need for careful consideration of transport-induced biases.","PeriodicalId":54647,"journal":{"name":"Palaios","volume":"37 1","pages":"185 - 200"},"PeriodicalIF":1.5000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DYNAMICS OF DEPOSITION AND FOSSIL PRESERVATION AT THE EARLY EOCENE OKANAGAN HIGHLANDS OF BRITISH COLUMBIA, CANADA: INSIGHTS FROM ORGANIC GEOCHEMISTRY\",\"authors\":\"A. Lowe, A. Diefendorf, K. Schlanser, J. Super, C. K. West, D. Greenwood\",\"doi\":\"10.2110/palo.2021.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The early Eocene Okanagan Highland fossil sites of Washington (USA) and British Columbia (Canada) contain exquisitely preserved plant and insect fossils that showcase a critical time and place in the evolution of the Northern Hemisphere temperate deciduous biome. A comprehensive understanding of the dynamics of fossil deposition and preservation at these sites is not fully resolved but is critical for reliable reconstructions of these ancient forests. To expand on previous interpretations (e.g., deep, stratified, anoxic lake bottoms) and address uncertainties about the environment of deposition (e.g., distance to shore, influence of diatoms), we analyzed sediment samples from three Okanagan Highland fossil sites—McAbee, Falkland, and Driftwood Canyon—for organic biomarkers, their stable carbon isotopic compositions, and glycerol dialkyl glycerol tetraethers (GDGTs; at McAbee only). Terpenoids suggest relative trends in gymnosperm abundance between sites that agree with prior macrofossil evidence, though absolute values may overestimate local gymnosperm abundance. A combination of biomarker evidence indicates a predominantly autochthonous aquatic source (e.g., diatoms) for organic matter in shale and mudstone samples, even contributing to long chain n-alkanes and likely to branched GDGTs, which are often assumed to be terrestrially sourced. In combination with biomarker evidence for anoxia and stratification, fossiliferous shales are interpreted to have been deposited offshore in deep and mesotrophic lakes that were thermally stratified with an anoxic hypolimnion, away from in-flowing tributaries, while a coal horizon at Driftwood Canyon was deposited in a shallower, eutrophic, anoxic wetland. Anoxic conditions likely minimized some degradation-based biases and promoted high quality fossil preservation. Deposition of sediment and fossil remains offshore and away from inflowing tributaries suggest fossil plants were locally sourced but highlights the need for careful consideration of transport-induced biases.\",\"PeriodicalId\":54647,\"journal\":{\"name\":\"Palaios\",\"volume\":\"37 1\",\"pages\":\"185 - 200\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Palaios\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2110/palo.2021.007\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaios","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/palo.2021.007","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
DYNAMICS OF DEPOSITION AND FOSSIL PRESERVATION AT THE EARLY EOCENE OKANAGAN HIGHLANDS OF BRITISH COLUMBIA, CANADA: INSIGHTS FROM ORGANIC GEOCHEMISTRY
Abstract: The early Eocene Okanagan Highland fossil sites of Washington (USA) and British Columbia (Canada) contain exquisitely preserved plant and insect fossils that showcase a critical time and place in the evolution of the Northern Hemisphere temperate deciduous biome. A comprehensive understanding of the dynamics of fossil deposition and preservation at these sites is not fully resolved but is critical for reliable reconstructions of these ancient forests. To expand on previous interpretations (e.g., deep, stratified, anoxic lake bottoms) and address uncertainties about the environment of deposition (e.g., distance to shore, influence of diatoms), we analyzed sediment samples from three Okanagan Highland fossil sites—McAbee, Falkland, and Driftwood Canyon—for organic biomarkers, their stable carbon isotopic compositions, and glycerol dialkyl glycerol tetraethers (GDGTs; at McAbee only). Terpenoids suggest relative trends in gymnosperm abundance between sites that agree with prior macrofossil evidence, though absolute values may overestimate local gymnosperm abundance. A combination of biomarker evidence indicates a predominantly autochthonous aquatic source (e.g., diatoms) for organic matter in shale and mudstone samples, even contributing to long chain n-alkanes and likely to branched GDGTs, which are often assumed to be terrestrially sourced. In combination with biomarker evidence for anoxia and stratification, fossiliferous shales are interpreted to have been deposited offshore in deep and mesotrophic lakes that were thermally stratified with an anoxic hypolimnion, away from in-flowing tributaries, while a coal horizon at Driftwood Canyon was deposited in a shallower, eutrophic, anoxic wetland. Anoxic conditions likely minimized some degradation-based biases and promoted high quality fossil preservation. Deposition of sediment and fossil remains offshore and away from inflowing tributaries suggest fossil plants were locally sourced but highlights the need for careful consideration of transport-induced biases.
期刊介绍:
PALAIOS is a monthly journal, founded in 1986, dedicated to emphasizing the impact of life on Earth''s history as recorded in the paleontological and sedimentological records. PALAIOS disseminates information to an international spectrum of geologists and biologists interested in a broad range of topics, including, but not limited to, biogeochemistry, ichnology, paleoclimatology, paleoecology, paleoceanography, sedimentology, stratigraphy, geomicrobiology, paleobiogeochemistry, and astrobiology.
PALAIOS publishes original papers that emphasize using paleontology to answer important geological and biological questions that further our understanding of Earth history. Accordingly, manuscripts whose subject matter and conclusions have broader geologic implications are much more likely to be selected for publication. Given that the purpose of PALAIOS is to generate enthusiasm for paleontology among a broad spectrum of readers, the editors request the following: titles that generate immediate interest; abstracts that emphasize important conclusions; illustrations of professional caliber used in place of words; and lively, yet scholarly, text.