{"title":"伪贝叶斯小面积估计","authors":"G. Datta, Juhyung Lee, Jiacheng Li","doi":"10.1093/jssam/smad012","DOIUrl":null,"url":null,"abstract":"\n In sample surveys, a subpopulation is referred to as a “small area” or “small domain” if it does not have a large enough sample that alone will yield an adequately accurate estimate of a characteristic. In small-area estimation, the sample size from various subpopulations is often too small to accurately estimate its mean, and so one borrows strength from similar subpopulations through an appropriate model based on relevant covariates. The empirical best linear unbiased prediction (EBLUP) method has been the dominant frequentist model-based approach in small-area estimation. This method relies on estimation of model parameters based on the marginal distribution of the data. As an alternative to this method, the observed best prediction (OBP) method estimates the parameters by minimizing an objective function that is implied by the total mean squared prediction error. We use this objective function in the Fay–Herriot model to construct a pseudo-posterior distribution for the model parameters under nearly noninformative priors for them. Data analysis and simulation show that the pseudo-Bayesian estimators (PBEs) compete favorably with the OBPs and EBLUPs. The PBE estimates are robust to mean misspecification and have good frequentist properties. Being Bayesian by construction, they automatically avoid negative estimates of standard errors, enjoy a dual justification, and provide an attractive alternative to practitioners.","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-Bayesian Small-Area Estimation\",\"authors\":\"G. Datta, Juhyung Lee, Jiacheng Li\",\"doi\":\"10.1093/jssam/smad012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In sample surveys, a subpopulation is referred to as a “small area” or “small domain” if it does not have a large enough sample that alone will yield an adequately accurate estimate of a characteristic. In small-area estimation, the sample size from various subpopulations is often too small to accurately estimate its mean, and so one borrows strength from similar subpopulations through an appropriate model based on relevant covariates. The empirical best linear unbiased prediction (EBLUP) method has been the dominant frequentist model-based approach in small-area estimation. This method relies on estimation of model parameters based on the marginal distribution of the data. As an alternative to this method, the observed best prediction (OBP) method estimates the parameters by minimizing an objective function that is implied by the total mean squared prediction error. We use this objective function in the Fay–Herriot model to construct a pseudo-posterior distribution for the model parameters under nearly noninformative priors for them. Data analysis and simulation show that the pseudo-Bayesian estimators (PBEs) compete favorably with the OBPs and EBLUPs. The PBE estimates are robust to mean misspecification and have good frequentist properties. Being Bayesian by construction, they automatically avoid negative estimates of standard errors, enjoy a dual justification, and provide an attractive alternative to practitioners.\",\"PeriodicalId\":17146,\"journal\":{\"name\":\"Journal of Survey Statistics and Methodology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Survey Statistics and Methodology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jssam/smad012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Survey Statistics and Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smad012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
In sample surveys, a subpopulation is referred to as a “small area” or “small domain” if it does not have a large enough sample that alone will yield an adequately accurate estimate of a characteristic. In small-area estimation, the sample size from various subpopulations is often too small to accurately estimate its mean, and so one borrows strength from similar subpopulations through an appropriate model based on relevant covariates. The empirical best linear unbiased prediction (EBLUP) method has been the dominant frequentist model-based approach in small-area estimation. This method relies on estimation of model parameters based on the marginal distribution of the data. As an alternative to this method, the observed best prediction (OBP) method estimates the parameters by minimizing an objective function that is implied by the total mean squared prediction error. We use this objective function in the Fay–Herriot model to construct a pseudo-posterior distribution for the model parameters under nearly noninformative priors for them. Data analysis and simulation show that the pseudo-Bayesian estimators (PBEs) compete favorably with the OBPs and EBLUPs. The PBE estimates are robust to mean misspecification and have good frequentist properties. Being Bayesian by construction, they automatically avoid negative estimates of standard errors, enjoy a dual justification, and provide an attractive alternative to practitioners.
期刊介绍:
The Journal of Survey Statistics and Methodology, sponsored by AAPOR and the American Statistical Association, began publishing in 2013. Its objective is to publish cutting edge scholarly articles on statistical and methodological issues for sample surveys, censuses, administrative record systems, and other related data. It aims to be the flagship journal for research on survey statistics and methodology. Topics of interest include survey sample design, statistical inference, nonresponse, measurement error, the effects of modes of data collection, paradata and responsive survey design, combining data from multiple sources, record linkage, disclosure limitation, and other issues in survey statistics and methodology. The journal publishes both theoretical and applied papers, provided the theory is motivated by an important applied problem and the applied papers report on research that contributes generalizable knowledge to the field. Review papers are also welcomed. Papers on a broad range of surveys are encouraged, including (but not limited to) surveys concerning business, economics, marketing research, social science, environment, epidemiology, biostatistics and official statistics. The journal has three sections. The Survey Statistics section presents papers on innovative sampling procedures, imputation, weighting, measures of uncertainty, small area inference, new methods of analysis, and other statistical issues related to surveys. The Survey Methodology section presents papers that focus on methodological research, including methodological experiments, methods of data collection and use of paradata. The Applications section contains papers involving innovative applications of methods and providing practical contributions and guidance, and/or significant new findings.