Congqi Luan, Qian Zhang, Zhenming Wu, Zipeng Han, Zonghui Zhou, P. Du, Feng Wu, Y. Huang
{"title":"揭示疏水性硅灰(HPS)在超高性能混凝土(UHPC)流变学、水化和微观结构中的作用","authors":"Congqi Luan, Qian Zhang, Zhenming Wu, Zipeng Han, Zonghui Zhou, P. Du, Feng Wu, Y. Huang","doi":"10.1080/21650373.2023.2222398","DOIUrl":null,"url":null,"abstract":"This article aims to investigate the effect of hydrophobic silica fume (HPS) on the rheological behavior, hydration performance, compressive strength, and microstructure of ultra-high-performance concrete (UHPC). Those characteristics of UHPC containing HPS or silica fume (SF) were explored by analytical techniques: rheology, X-ray diffraction, thermogravimetric, Fourier-transform infrared spectrum, X-ray photoelectron spectroscopy, 29Si nuclear magnetic resonance spectroscopy, mercury intrusion porosimeter, and scanning electron microscopy-energy dispersive spectroscopy. This study demonstrated that UHPC containing HPS showed a lower viscosity and yield stress and developed higher compressive strength and flowability than that of UHPC with SF. Furthermore, the HPS with higher pozzolanic activity consumed calcium hydroxide crystals and formed C-S-H gel, which refined the pore structure, improved the compressive strength, and decreased the porosity. Moreover, HPS changed the gel molecular structure, increased the Al substitution in the silicate network and mean chain length of C-(A)-S-H, and deceased Ca2p-Si2p energy separation values, which led to a higher degree of polymerization in the C-(A)-S-H.","PeriodicalId":48521,"journal":{"name":"Journal of Sustainable Cement-Based Materials","volume":"12 1","pages":"1399 - 1413"},"PeriodicalIF":4.7000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uncovering the role of hydrophobic silica fume (HPS) in rheology, hydration, and microstructure of ultra-high-performance concrete (UHPC)\",\"authors\":\"Congqi Luan, Qian Zhang, Zhenming Wu, Zipeng Han, Zonghui Zhou, P. Du, Feng Wu, Y. Huang\",\"doi\":\"10.1080/21650373.2023.2222398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to investigate the effect of hydrophobic silica fume (HPS) on the rheological behavior, hydration performance, compressive strength, and microstructure of ultra-high-performance concrete (UHPC). Those characteristics of UHPC containing HPS or silica fume (SF) were explored by analytical techniques: rheology, X-ray diffraction, thermogravimetric, Fourier-transform infrared spectrum, X-ray photoelectron spectroscopy, 29Si nuclear magnetic resonance spectroscopy, mercury intrusion porosimeter, and scanning electron microscopy-energy dispersive spectroscopy. This study demonstrated that UHPC containing HPS showed a lower viscosity and yield stress and developed higher compressive strength and flowability than that of UHPC with SF. Furthermore, the HPS with higher pozzolanic activity consumed calcium hydroxide crystals and formed C-S-H gel, which refined the pore structure, improved the compressive strength, and decreased the porosity. Moreover, HPS changed the gel molecular structure, increased the Al substitution in the silicate network and mean chain length of C-(A)-S-H, and deceased Ca2p-Si2p energy separation values, which led to a higher degree of polymerization in the C-(A)-S-H.\",\"PeriodicalId\":48521,\"journal\":{\"name\":\"Journal of Sustainable Cement-Based Materials\",\"volume\":\"12 1\",\"pages\":\"1399 - 1413\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Cement-Based Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21650373.2023.2222398\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Cement-Based Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21650373.2023.2222398","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Uncovering the role of hydrophobic silica fume (HPS) in rheology, hydration, and microstructure of ultra-high-performance concrete (UHPC)
This article aims to investigate the effect of hydrophobic silica fume (HPS) on the rheological behavior, hydration performance, compressive strength, and microstructure of ultra-high-performance concrete (UHPC). Those characteristics of UHPC containing HPS or silica fume (SF) were explored by analytical techniques: rheology, X-ray diffraction, thermogravimetric, Fourier-transform infrared spectrum, X-ray photoelectron spectroscopy, 29Si nuclear magnetic resonance spectroscopy, mercury intrusion porosimeter, and scanning electron microscopy-energy dispersive spectroscopy. This study demonstrated that UHPC containing HPS showed a lower viscosity and yield stress and developed higher compressive strength and flowability than that of UHPC with SF. Furthermore, the HPS with higher pozzolanic activity consumed calcium hydroxide crystals and formed C-S-H gel, which refined the pore structure, improved the compressive strength, and decreased the porosity. Moreover, HPS changed the gel molecular structure, increased the Al substitution in the silicate network and mean chain length of C-(A)-S-H, and deceased Ca2p-Si2p energy separation values, which led to a higher degree of polymerization in the C-(A)-S-H.
期刊介绍:
The Journal of Sustainable Cement-Based Materials aims to publish theoretical and applied researches on materials, products and structures that incorporate cement. The journal is a forum for discussion of research on manufacture, hydration and performance of cement-based materials; novel experimental techniques; the latest analytical and modelling methods; the examination and the diagnosis of real cement and concrete structures; and the potential for improved cement-based materials. The journal welcomes original research papers, major reviews, rapid communications and selected conference papers. The Journal of Sustainable Cement-Based Materials covers a wide range of topics within its subject category, including but are not limited to: • raw materials and manufacture of cement • mixing, rheology and hydration • admixtures • structural characteristics and performance of cement-based materials • characterisation techniques and modeling • use of fibre in cement based-materials • degradation and repair of cement-based materials • novel testing techniques and applications • waste management