羽扇紫苏亚科基础成员羽扇紫竹的叶片形态和解剖

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-08-19 DOI:10.1093/botlinnean/boad030
E. Urtubey, María C Klusch, T. Stuessy
{"title":"羽扇紫苏亚科基础成员羽扇紫竹的叶片形态和解剖","authors":"E. Urtubey, María C Klusch, T. Stuessy","doi":"10.1093/botlinnean/boad030","DOIUrl":null,"url":null,"abstract":"\n Based on molecular phylogenetic studies, Barnadesioideae have been proposed to be the basal subfamily of Asteraceae. This is a complex of 10 genera and 87 species distributed primarily along the Andean mountains, Patagonia, and into southern Brazil and Uruguay. Phylogenetic analyses have recovered all genera as monophyletic groups and have provided insights to their inter-relationships. Four generic clades have been substantiated: (1) Chuquiraga, Doniophyton, and Duseniella; (2) Dasyphyllum; (3) Barnadesia and Huarpea; and (4) Archidasyphyllum, Arnaldoa, and Fulcaldea. The remaining genus, the monospecific Schlechtendalia, has been an outlier in the subfamily, with some previous analyses recovering it as basal for the entire subfamily, and others showing it as sister to Barnadesia and Huarpea (with weak support) as well as to other genera. Recent massive sampling of loci has confirmed Schlechtendalia as the sister genus for the subfamily. Schlechtendalia luzulifolia has morphology atypical for Asteraceae. The capitula are loose aggregations of florets, and the leaves are long and strap shaped, more reminiscent of monocots. Morphological and anatomical investigations of the leaves reveal long, laminar blades with parallelodromous vascularization. The vesture is often with ‘barnadesioid trichomes’, especially towards the base of the plant, plus additional uniseriate trichomes consisting of 3 to many cells, newly reported for the subfamily. Some glandular trichomes with 2-4 short cells also occur. The transverse anatomy of the leaves reveals a single epidermal layer on both surfaces, which also contain the stomata (the leaf being amphistomatic). The mesophyll is undifferentiated; the vascular traces are surrounded by sclerenchyma that not only encircles the traces but also extends towards the epidermis and connects with it. The morphology and anatomy of the leaves of Schlechtendalia are divergent in comparison with other genera of the subfamily. Chuquiraga, Doniophyton, and Huarpea have leaf adaptations for survival in xeric habitats, such as dense pubescence, grey surfaces, and revolute margins. Schlechtendalia, in contrast, is adapted to a more mesic environment, especially near the Atlantic Ocean and along the Uruguay and La Plata rivers. The leaves are oriented upright, which correlates with undifferentiated mesophyll and stomata on both epidermal layers. The stem is an underground rhizome, an adaptation that permits survival during seasonal drought in the austral summer in Uruguay and adjacent regions. It is hypothesized that Schlechtendalia may have become adapted to more mesic environments in the Miocene prior to the rise of the Andes and development of the modern arid environments, into which many of the other genera of the subfamily subsequently radiated.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaf morphology and anatomy of Schlechtendalia luzulifolia, a basal member of subfamily Barnadesioideae (Asteraceae)\",\"authors\":\"E. Urtubey, María C Klusch, T. Stuessy\",\"doi\":\"10.1093/botlinnean/boad030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Based on molecular phylogenetic studies, Barnadesioideae have been proposed to be the basal subfamily of Asteraceae. This is a complex of 10 genera and 87 species distributed primarily along the Andean mountains, Patagonia, and into southern Brazil and Uruguay. Phylogenetic analyses have recovered all genera as monophyletic groups and have provided insights to their inter-relationships. Four generic clades have been substantiated: (1) Chuquiraga, Doniophyton, and Duseniella; (2) Dasyphyllum; (3) Barnadesia and Huarpea; and (4) Archidasyphyllum, Arnaldoa, and Fulcaldea. The remaining genus, the monospecific Schlechtendalia, has been an outlier in the subfamily, with some previous analyses recovering it as basal for the entire subfamily, and others showing it as sister to Barnadesia and Huarpea (with weak support) as well as to other genera. Recent massive sampling of loci has confirmed Schlechtendalia as the sister genus for the subfamily. Schlechtendalia luzulifolia has morphology atypical for Asteraceae. The capitula are loose aggregations of florets, and the leaves are long and strap shaped, more reminiscent of monocots. Morphological and anatomical investigations of the leaves reveal long, laminar blades with parallelodromous vascularization. The vesture is often with ‘barnadesioid trichomes’, especially towards the base of the plant, plus additional uniseriate trichomes consisting of 3 to many cells, newly reported for the subfamily. Some glandular trichomes with 2-4 short cells also occur. The transverse anatomy of the leaves reveals a single epidermal layer on both surfaces, which also contain the stomata (the leaf being amphistomatic). The mesophyll is undifferentiated; the vascular traces are surrounded by sclerenchyma that not only encircles the traces but also extends towards the epidermis and connects with it. The morphology and anatomy of the leaves of Schlechtendalia are divergent in comparison with other genera of the subfamily. Chuquiraga, Doniophyton, and Huarpea have leaf adaptations for survival in xeric habitats, such as dense pubescence, grey surfaces, and revolute margins. Schlechtendalia, in contrast, is adapted to a more mesic environment, especially near the Atlantic Ocean and along the Uruguay and La Plata rivers. The leaves are oriented upright, which correlates with undifferentiated mesophyll and stomata on both epidermal layers. The stem is an underground rhizome, an adaptation that permits survival during seasonal drought in the austral summer in Uruguay and adjacent regions. It is hypothesized that Schlechtendalia may have become adapted to more mesic environments in the Miocene prior to the rise of the Andes and development of the modern arid environments, into which many of the other genera of the subfamily subsequently radiated.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/botlinnean/boad030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/botlinnean/boad030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

根据分子系统发育研究,Barnadesioideae被认为是菊科的基础亚科。这是一个由10属87种组成的综合体,主要分布在安第斯山脉、巴塔哥尼亚以及巴西南部和乌拉圭。系统发育分析已经将所有属恢复为单系群,并为它们的相互关系提供了见解。已经证实了四个属分支:(1)Chuquiraga、Doniophyton和Duseniella;(2) 大叶藻;(3) Barnadesia和Huarpea;和(4)Archidasyphyllum、Arnaldoa和Fulcaldea。剩下的属,单种Schlechtendalia,一直是亚科中的一个异类,之前的一些分析将其恢复为整个亚科的基础,而其他分析则显示它是Barnadesia和Huarpea(支持较弱)以及其他属的姐妹。最近对基因座的大规模采样已经证实Schlechtendala是该亚科的姐妹属。羽叶石竹的形态对菊科来说是非典型的。头状花序是小花的松散聚集体,叶子长而呈带状,更让人想起单子叶植物。对叶片的形态学和解剖学研究表明,叶片长而层状,血管形成平行。外衣通常有“barnadesioid毛状体”,尤其是在植物的基部,加上由3到许多细胞组成的额外的单列毛状体,这是该亚科的最新报道。一些腺毛也有2-4个短细胞。叶片的横向解剖显示,两个表面都有一个表皮层,其中也包含气孔(叶片是两孔的)。叶肉未分化;血管痕迹被厚壁组织包围,厚壁组织不仅包围痕迹,而且向表皮延伸并与之相连。Chuquiraga、Doniophyton和Huarpea具有在xeric栖息地生存的叶片适应性,如浓密的短柔毛、灰色表面和外卷边缘。相比之下,Schlechtendalia适应了更为宜人的环境,尤其是在大西洋附近以及乌拉圭河和拉普拉塔河沿岸。叶片定向直立,这与两个表皮层上的未分化叶肉和气孔有关。茎是一种地下根茎,在乌拉圭和邻近地区的南半球夏季季节性干旱期间,这种适应能力可以生存。据推测,在安第斯山脉崛起和现代干旱环境发展之前的中新世,Schlechtendalia可能已经适应了更多的中新统环境,该亚科的许多其他属随后也进入了干旱环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leaf morphology and anatomy of Schlechtendalia luzulifolia, a basal member of subfamily Barnadesioideae (Asteraceae)
Based on molecular phylogenetic studies, Barnadesioideae have been proposed to be the basal subfamily of Asteraceae. This is a complex of 10 genera and 87 species distributed primarily along the Andean mountains, Patagonia, and into southern Brazil and Uruguay. Phylogenetic analyses have recovered all genera as monophyletic groups and have provided insights to their inter-relationships. Four generic clades have been substantiated: (1) Chuquiraga, Doniophyton, and Duseniella; (2) Dasyphyllum; (3) Barnadesia and Huarpea; and (4) Archidasyphyllum, Arnaldoa, and Fulcaldea. The remaining genus, the monospecific Schlechtendalia, has been an outlier in the subfamily, with some previous analyses recovering it as basal for the entire subfamily, and others showing it as sister to Barnadesia and Huarpea (with weak support) as well as to other genera. Recent massive sampling of loci has confirmed Schlechtendalia as the sister genus for the subfamily. Schlechtendalia luzulifolia has morphology atypical for Asteraceae. The capitula are loose aggregations of florets, and the leaves are long and strap shaped, more reminiscent of monocots. Morphological and anatomical investigations of the leaves reveal long, laminar blades with parallelodromous vascularization. The vesture is often with ‘barnadesioid trichomes’, especially towards the base of the plant, plus additional uniseriate trichomes consisting of 3 to many cells, newly reported for the subfamily. Some glandular trichomes with 2-4 short cells also occur. The transverse anatomy of the leaves reveals a single epidermal layer on both surfaces, which also contain the stomata (the leaf being amphistomatic). The mesophyll is undifferentiated; the vascular traces are surrounded by sclerenchyma that not only encircles the traces but also extends towards the epidermis and connects with it. The morphology and anatomy of the leaves of Schlechtendalia are divergent in comparison with other genera of the subfamily. Chuquiraga, Doniophyton, and Huarpea have leaf adaptations for survival in xeric habitats, such as dense pubescence, grey surfaces, and revolute margins. Schlechtendalia, in contrast, is adapted to a more mesic environment, especially near the Atlantic Ocean and along the Uruguay and La Plata rivers. The leaves are oriented upright, which correlates with undifferentiated mesophyll and stomata on both epidermal layers. The stem is an underground rhizome, an adaptation that permits survival during seasonal drought in the austral summer in Uruguay and adjacent regions. It is hypothesized that Schlechtendalia may have become adapted to more mesic environments in the Miocene prior to the rise of the Andes and development of the modern arid environments, into which many of the other genera of the subfamily subsequently radiated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1