社交失败方案中伤害肽/孤啡肽FQ受体激活的行为和神经化学效应。

IF 1.6 4区 医学 Q3 BEHAVIORAL SCIENCES Behavioral neuroscience Pub Date : 2022-10-24 DOI:10.1037/bne0000539.supp
Alice Barros Câmara, Igor Augusto Brandão
{"title":"社交失败方案中伤害肽/孤啡肽FQ受体激活的行为和神经化学效应。","authors":"Alice Barros Câmara, Igor Augusto Brandão","doi":"10.1037/bne0000539.supp","DOIUrl":null,"url":null,"abstract":"The nociceptin/orphanin FQ receptor (NOP receptor) has wide expression in the nervous system and is involved in neurotransmitter release. However, the role of the NOPR in depression is not widely recognized. This study aims to evaluate behavioral and biochemical effects of the NOPR agonist Ro 65-6570 in mice submitted to social defeat protocol. The open-field test, social interaction test, and tail suspension test were applied to evaluate depressive behavior in male Swiss mice. Blood and brain tissue samples were obtained to evaluate the oxidative stress. The NOP agonist, Ro 65-6570 (1 mg/kg), or the social defeat stress reduced exploration rate in the open-field test. The social defeat stress and/or the NOP agonist also increased immobility time in the tail suspension test and the grooming time, as well as reduced the social interaction on the last day of social defeat protocol. Seven days after the end of the protocol, only the drug alone was able to affect the animals' interaction. Additionally, the NOP agonist increased the concentration of carbonyl groups (CGs) in hippocampus and malondialdehyde in serum. The stress of social defeat and the NOP agonist, together, increased malondialdehyde in animals' serum and prefrontal cortex, as well as increased the CGs concentration in the prefrontal cortex. These findings indicate a chronic depressive effect induced by the NOPR activation, sometimes regardless of the social defeat stress. We suggest that the NOPR signaling can activate pathways involved in cellular oxidative stress, contributing to the depression pathology. (PsycInfo Database Record (c) 2022 APA, all rights reserved).","PeriodicalId":8739,"journal":{"name":"Behavioral neuroscience","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Behavioral and neurochemical effects of nociceptin/orphanin FQ receptor activation in the social defeat protocol.\",\"authors\":\"Alice Barros Câmara, Igor Augusto Brandão\",\"doi\":\"10.1037/bne0000539.supp\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nociceptin/orphanin FQ receptor (NOP receptor) has wide expression in the nervous system and is involved in neurotransmitter release. However, the role of the NOPR in depression is not widely recognized. This study aims to evaluate behavioral and biochemical effects of the NOPR agonist Ro 65-6570 in mice submitted to social defeat protocol. The open-field test, social interaction test, and tail suspension test were applied to evaluate depressive behavior in male Swiss mice. Blood and brain tissue samples were obtained to evaluate the oxidative stress. The NOP agonist, Ro 65-6570 (1 mg/kg), or the social defeat stress reduced exploration rate in the open-field test. The social defeat stress and/or the NOP agonist also increased immobility time in the tail suspension test and the grooming time, as well as reduced the social interaction on the last day of social defeat protocol. Seven days after the end of the protocol, only the drug alone was able to affect the animals' interaction. Additionally, the NOP agonist increased the concentration of carbonyl groups (CGs) in hippocampus and malondialdehyde in serum. The stress of social defeat and the NOP agonist, together, increased malondialdehyde in animals' serum and prefrontal cortex, as well as increased the CGs concentration in the prefrontal cortex. These findings indicate a chronic depressive effect induced by the NOPR activation, sometimes regardless of the social defeat stress. We suggest that the NOPR signaling can activate pathways involved in cellular oxidative stress, contributing to the depression pathology. (PsycInfo Database Record (c) 2022 APA, all rights reserved).\",\"PeriodicalId\":8739,\"journal\":{\"name\":\"Behavioral neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1037/bne0000539.supp\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1037/bne0000539.supp","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

伤害肽/孤啡肽FQ受体(NOP受体)在神经系统中广泛表达,并参与神经递质的释放。然而,NOPR在抑郁症中的作用并没有得到广泛的认识。本研究旨在评估NOPR激动剂Ro65-6570对接受社交失败方案的小鼠的行为和生化影响。采用开放场地试验、社会互动试验和尾部悬吊试验对雄性瑞士小鼠的抑郁行为进行评估。获得血液和脑组织样本以评估氧化应激。NOP激动剂Ro 65-6570(1 mg/kg)或社交失败应激降低了野外试验中的探索率。社交失败压力和/或NOP激动剂也增加了尾部悬吊测试中的不动时间和梳理时间,并减少了社交失败协议最后一天的社交互动。方案结束七天后,只有单独的药物能够影响动物的相互作用。此外,NOP激动剂增加了海马中羰基(CGs)的浓度和血清中丙二醛的浓度。社交失败的压力和NOP激动剂一起增加了动物血清和前额叶皮层中的丙二醛,并增加了前额叶皮层的CGs浓度。这些发现表明,NOPR激活会引起慢性抑郁效应,有时与社交失败压力无关。我们认为,NOPR信号可以激活参与细胞氧化应激的途径,从而促进抑郁症的病理学。(PsycInfo数据库记录(c)2022 APA,保留所有权利)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Behavioral and neurochemical effects of nociceptin/orphanin FQ receptor activation in the social defeat protocol.
The nociceptin/orphanin FQ receptor (NOP receptor) has wide expression in the nervous system and is involved in neurotransmitter release. However, the role of the NOPR in depression is not widely recognized. This study aims to evaluate behavioral and biochemical effects of the NOPR agonist Ro 65-6570 in mice submitted to social defeat protocol. The open-field test, social interaction test, and tail suspension test were applied to evaluate depressive behavior in male Swiss mice. Blood and brain tissue samples were obtained to evaluate the oxidative stress. The NOP agonist, Ro 65-6570 (1 mg/kg), or the social defeat stress reduced exploration rate in the open-field test. The social defeat stress and/or the NOP agonist also increased immobility time in the tail suspension test and the grooming time, as well as reduced the social interaction on the last day of social defeat protocol. Seven days after the end of the protocol, only the drug alone was able to affect the animals' interaction. Additionally, the NOP agonist increased the concentration of carbonyl groups (CGs) in hippocampus and malondialdehyde in serum. The stress of social defeat and the NOP agonist, together, increased malondialdehyde in animals' serum and prefrontal cortex, as well as increased the CGs concentration in the prefrontal cortex. These findings indicate a chronic depressive effect induced by the NOPR activation, sometimes regardless of the social defeat stress. We suggest that the NOPR signaling can activate pathways involved in cellular oxidative stress, contributing to the depression pathology. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavioral neuroscience
Behavioral neuroscience 医学-行为科学
CiteScore
3.40
自引率
0.00%
发文量
51
审稿时长
6-12 weeks
期刊介绍: Behavioral Neuroscience publishes original research articles as well as reviews in the broad field of the neural bases of behavior.
期刊最新文献
Methylphenidate differentially affects the social ultrasonic vocalizations of wild-type and prodromal Parkinsonian rats. Slight and hidden hearing loss in young rats is associated with impaired recognition memory and reduced myelination in the corpus callosum. Renewal of conditioned fear in male and female rats. N-tert-butoxycarbonyl-methylenedioxymethamphetamine, an methylenedioxymethamphetamine derivative, exhibits rewarding and reinforcing effects by increasing dopamine levels. Sex differences in behavior and glutamic acid decarboxylase in Long Evans rats after prolonged social isolation beginning in adolescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1