改进了水力基础设施风险管理的最大流量评估。案例研究

A. M. Bento, A. Gomes, J. P. Pêgo, T. Viseu, Lúcia Couto
{"title":"改进了水力基础设施风险管理的最大流量评估。案例研究","authors":"A. M. Bento, A. Gomes, J. P. Pêgo, T. Viseu, Lúcia Couto","doi":"10.1080/15715124.2021.2016783","DOIUrl":null,"url":null,"abstract":"ABSTRACT Understanding the risks associated with the likelihood of extreme events and their respective consequences for the stability of hydraulic infrastructures is essential for flood forecasting and engineering design purposes. Accordingly, a hydrological methodology for providing reliable estimates of extreme discharge flows approaching hydraulic infrastructures was developed. It is composed of a preliminary assessment of missing data, quality and reliability for statistically assessing the frequency of flood flows, allied to parametric and non-parametric methods. Model and parameter uncertainties are accounted for by the introduced and proposed modified model averaging (modified MM) approach in the extreme hydrological event's prediction. An assessment of the parametric methods accuracy was performed by using the non-parametric Kernel Density Estimate (KDE) as a benchmark model. For demonstration and validity purposes, this methodology was applied to estimate the design floods approaching the case study ‘new Hintze Ribeiro bridge’, located in the Douro river, one of the three main rivers in Portugal, and having one of Europe's largest river flood flows. Given the obtained results, the modified MM is considered a better estimation method.","PeriodicalId":14344,"journal":{"name":"International Journal of River Basin Management","volume":"21 1","pages":"489 - 499"},"PeriodicalIF":2.2000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved assessment of maximum streamflow for risk management of hydraulic infrastructures. A case study\",\"authors\":\"A. M. Bento, A. Gomes, J. P. Pêgo, T. Viseu, Lúcia Couto\",\"doi\":\"10.1080/15715124.2021.2016783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Understanding the risks associated with the likelihood of extreme events and their respective consequences for the stability of hydraulic infrastructures is essential for flood forecasting and engineering design purposes. Accordingly, a hydrological methodology for providing reliable estimates of extreme discharge flows approaching hydraulic infrastructures was developed. It is composed of a preliminary assessment of missing data, quality and reliability for statistically assessing the frequency of flood flows, allied to parametric and non-parametric methods. Model and parameter uncertainties are accounted for by the introduced and proposed modified model averaging (modified MM) approach in the extreme hydrological event's prediction. An assessment of the parametric methods accuracy was performed by using the non-parametric Kernel Density Estimate (KDE) as a benchmark model. For demonstration and validity purposes, this methodology was applied to estimate the design floods approaching the case study ‘new Hintze Ribeiro bridge’, located in the Douro river, one of the three main rivers in Portugal, and having one of Europe's largest river flood flows. Given the obtained results, the modified MM is considered a better estimation method.\",\"PeriodicalId\":14344,\"journal\":{\"name\":\"International Journal of River Basin Management\",\"volume\":\"21 1\",\"pages\":\"489 - 499\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of River Basin Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15715124.2021.2016783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of River Basin Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15715124.2021.2016783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

摘要

摘要了解与极端事件可能性相关的风险及其对水利基础设施稳定性的影响,对于洪水预报和工程设计至关重要。因此,开发了一种水文方法,用于对接近水力基础设施的极端流量进行可靠估计。它包括对缺失数据、质量和可靠性的初步评估,用于统计评估洪水流量的频率,并结合参数和非参数方法。在极端水文事件的预测中,引入并提出了修正模型平均法(修正MM)来解释模型和参数的不确定性。通过使用非参数核密度估计(KDE)作为基准模型,对参数方法的准确性进行了评估。为了证明和有效性,该方法用于估算案例研究“新Hintze Ribeiro大桥”的设计洪水,该桥位于葡萄牙三条主要河流之一的杜罗河,是欧洲最大的河流洪水流量之一。鉴于所获得的结果,改进的MM被认为是一种更好的估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved assessment of maximum streamflow for risk management of hydraulic infrastructures. A case study
ABSTRACT Understanding the risks associated with the likelihood of extreme events and their respective consequences for the stability of hydraulic infrastructures is essential for flood forecasting and engineering design purposes. Accordingly, a hydrological methodology for providing reliable estimates of extreme discharge flows approaching hydraulic infrastructures was developed. It is composed of a preliminary assessment of missing data, quality and reliability for statistically assessing the frequency of flood flows, allied to parametric and non-parametric methods. Model and parameter uncertainties are accounted for by the introduced and proposed modified model averaging (modified MM) approach in the extreme hydrological event's prediction. An assessment of the parametric methods accuracy was performed by using the non-parametric Kernel Density Estimate (KDE) as a benchmark model. For demonstration and validity purposes, this methodology was applied to estimate the design floods approaching the case study ‘new Hintze Ribeiro bridge’, located in the Douro river, one of the three main rivers in Portugal, and having one of Europe's largest river flood flows. Given the obtained results, the modified MM is considered a better estimation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
4.00%
发文量
48
期刊介绍: include, but are not limited to new developments or applications in the following areas: AREAS OF INTEREST - integrated water resources management - watershed land use planning and management - spatial planning and management of floodplains - flood forecasting and flood risk management - drought forecasting and drought management - floodplain, river and estuarine restoration - climate change impact prediction and planning of remedial measures - management of mountain rivers - water quality management including non point source pollution - operation strategies for engineered river systems - maintenance strategies for river systems and for structures - project-affected-people and stakeholder participation - conservation of natural and cultural heritage
期刊最新文献
The Rise of Counter Hydro-Hegemony and the Deconstruction of Old Narratives in the Eastern Nile Basin A Comparison of Eulerian and Semi-Lagrangian Approaches for Modeling Stream Water Quality People beyond the Border in the Sandbars of Damodar River: Understanding the People’s Management in a Changing Landscape, India Occurrence, toxicity load, pollution index and health risk assessment of trace elements in drinking water of two catchments in North-western Himalayas. Floods in Dinaric Karst fields: a case study of the Dicmanjsko-Bisko Polje (Croatia)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1