一种新的滤波和包裹序列对乳腺癌患者生存能力预测的性能分析

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-06-05 DOI:10.32985/ijeces.14.5.6
E. J. Sweetlin, S. Saudia
{"title":"一种新的滤波和包裹序列对乳腺癌患者生存能力预测的性能分析","authors":"E. J. Sweetlin, S. Saudia","doi":"10.32985/ijeces.14.5.6","DOIUrl":null,"url":null,"abstract":"Feature selection is an essential preprocessing step for removing redundant or irrelevant features from multidimensional data to improve predictive performance. Currently, medical clinical datasets are increasingly large and multidimensional and not every feature helps in the necessary predictions. So, feature selection techniques are used to determine relevant feature set that can improve the performance of a learning algorithm. This study presents a performance analysis of a new filter and wrapper sequence involving the intersection of filter methods, Mutual Information and Chi-Square followed by one of the wrapper methods: Sequential Forward Selection and Sequential Backward Selection to obtain a more informative feature set for improved prediction of the survivability of breast cancer patients from the clinical breast cancer dataset, SEER. The improvement in performance due to this filter and wrapper sequence in terms of Accuracy, False Positive Rate, False Negative Rate and Area under the Receiver Operating Characteristics curve is tested using the Machine learning algorithms: Logistic Regression, K-Nearest Neighbour, Decision Tree, Random Forest, Support Vector Machine and Multilayer Perceptron. The performance analysis supports the Sequential Backward Selection of the new filter and wrapper sequence over Sequential Forward Selection for the SEER dataset.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of a new Filter and Wrapper Sequence for the Survivability Prediction of Breast Cancer Patients\",\"authors\":\"E. J. Sweetlin, S. Saudia\",\"doi\":\"10.32985/ijeces.14.5.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is an essential preprocessing step for removing redundant or irrelevant features from multidimensional data to improve predictive performance. Currently, medical clinical datasets are increasingly large and multidimensional and not every feature helps in the necessary predictions. So, feature selection techniques are used to determine relevant feature set that can improve the performance of a learning algorithm. This study presents a performance analysis of a new filter and wrapper sequence involving the intersection of filter methods, Mutual Information and Chi-Square followed by one of the wrapper methods: Sequential Forward Selection and Sequential Backward Selection to obtain a more informative feature set for improved prediction of the survivability of breast cancer patients from the clinical breast cancer dataset, SEER. The improvement in performance due to this filter and wrapper sequence in terms of Accuracy, False Positive Rate, False Negative Rate and Area under the Receiver Operating Characteristics curve is tested using the Machine learning algorithms: Logistic Regression, K-Nearest Neighbour, Decision Tree, Random Forest, Support Vector Machine and Multilayer Perceptron. The performance analysis supports the Sequential Backward Selection of the new filter and wrapper sequence over Sequential Forward Selection for the SEER dataset.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.5.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.5.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

特征选择是从多维数据中去除冗余或不相关特征以提高预测性能的重要预处理步骤。目前,医学临床数据集越来越庞大和多维,并不是每个特征都有助于进行必要的预测。因此,使用特征选择技术来确定可以提高学习算法性能的相关特征集。本研究提出了一种新的滤波器和包装器序列的性能分析,该序列涉及滤波器方法的交集,Mutual Information和Chi-Square,然后是包装方法之一:顺序正向选择和顺序反向选择,从临床癌症数据集SEER中获得更具信息性的特征集,以改进对乳腺癌症患者生存能力的预测。使用机器学习算法:Logistic回归、K-Nearest Neighbour、决策树、随机森林、支持向量机和多层感知器,测试了该滤波器和包装序列在准确度、假阳性率、假阴性率和接收器工作特性曲线下面积方面的性能改进。性能分析支持SEER数据集的新过滤器和包装器序列的顺序向后选择,而不是顺序向前选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of a new Filter and Wrapper Sequence for the Survivability Prediction of Breast Cancer Patients
Feature selection is an essential preprocessing step for removing redundant or irrelevant features from multidimensional data to improve predictive performance. Currently, medical clinical datasets are increasingly large and multidimensional and not every feature helps in the necessary predictions. So, feature selection techniques are used to determine relevant feature set that can improve the performance of a learning algorithm. This study presents a performance analysis of a new filter and wrapper sequence involving the intersection of filter methods, Mutual Information and Chi-Square followed by one of the wrapper methods: Sequential Forward Selection and Sequential Backward Selection to obtain a more informative feature set for improved prediction of the survivability of breast cancer patients from the clinical breast cancer dataset, SEER. The improvement in performance due to this filter and wrapper sequence in terms of Accuracy, False Positive Rate, False Negative Rate and Area under the Receiver Operating Characteristics curve is tested using the Machine learning algorithms: Logistic Regression, K-Nearest Neighbour, Decision Tree, Random Forest, Support Vector Machine and Multilayer Perceptron. The performance analysis supports the Sequential Backward Selection of the new filter and wrapper sequence over Sequential Forward Selection for the SEER dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1