固定式外遮阳装置对住宅采光及热舒适性的影响

Q2 Energy Journal of Daylighting Pub Date : 2021-06-20 DOI:10.15627/jd.2021.15
Aliakbar Heidari, M. Taghipour, Z. Yarmahmoodi
{"title":"固定式外遮阳装置对住宅采光及热舒适性的影响","authors":"Aliakbar Heidari, M. Taghipour, Z. Yarmahmoodi","doi":"10.15627/jd.2021.15","DOIUrl":null,"url":null,"abstract":"Building shading devices can improve the thermal comfort in indoor environment, and also reduce cooling and heating energy consumption in dry and hot climate. This study proposes the different kind of window’s fixed shading devices for energy consumption under near-extreme summer and winter conditions by conducting residential building energy simulations in Shiraz climate. Which fixed shading devices optimal configurations that give maximum energy consumption can be used in Shiraz climate. The study was based on modeling-simulation experiments where Ecotect models resented the actual building energy with and without shading devices to reducing heating and cooling load and peak consumption. The results obtained confirmed the accuracy of the model and the suitability of (horizontal, eggcrate and geometrical) of shading devices in reducing the solar gains in summer with reduced blocking of solar radiation in winter. In all cases it has been proven that excessive obstruction may yield an excessive reduction in a range of illuminances between 500 and 2000 lux, increasing lighting energy consumption. At the end results showed that horizontal, geometrical and eggcrate have the best function according to reduce energy and have enough day lighting in the zones in shiraz climate.","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"The Effect of Fixed External Shading Devices on Daylighting and Thermal Comfort in Residential Building\",\"authors\":\"Aliakbar Heidari, M. Taghipour, Z. Yarmahmoodi\",\"doi\":\"10.15627/jd.2021.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building shading devices can improve the thermal comfort in indoor environment, and also reduce cooling and heating energy consumption in dry and hot climate. This study proposes the different kind of window’s fixed shading devices for energy consumption under near-extreme summer and winter conditions by conducting residential building energy simulations in Shiraz climate. Which fixed shading devices optimal configurations that give maximum energy consumption can be used in Shiraz climate. The study was based on modeling-simulation experiments where Ecotect models resented the actual building energy with and without shading devices to reducing heating and cooling load and peak consumption. The results obtained confirmed the accuracy of the model and the suitability of (horizontal, eggcrate and geometrical) of shading devices in reducing the solar gains in summer with reduced blocking of solar radiation in winter. In all cases it has been proven that excessive obstruction may yield an excessive reduction in a range of illuminances between 500 and 2000 lux, increasing lighting energy consumption. At the end results showed that horizontal, geometrical and eggcrate have the best function according to reduce energy and have enough day lighting in the zones in shiraz climate.\",\"PeriodicalId\":37388,\"journal\":{\"name\":\"Journal of Daylighting\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Daylighting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15627/jd.2021.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/jd.2021.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 11

摘要

建筑遮阳装置可以提高室内环境的热舒适性,也可以减少干燥和炎热气候下的制冷和制热能耗。本研究通过在设拉子气候条件下进行住宅建筑能源模拟,提出了不同类型的窗户固定遮阳装置在近极端夏冬条件下的能源消耗。在设拉子的气候中,固定遮阳装置的最佳配置可以提供最大的能源消耗。该研究基于建模模拟实验,Ecotect模型对实际建筑能源进行了模拟,以减少加热和冷却负荷以及峰值消耗。结果证实了模型的准确性和遮阳装置(水平、鸡蛋形和几何)在减少夏季太阳增益和减少冬季太阳辐射阻挡方面的适用性。在所有情况下,已经证明,过度的障碍物可能会导致500至2000勒克斯的照度范围过度减少,增加照明能耗。结果表明,在设拉子气候条件下,水平、几何和蛋箱三种布局方式在节能和采光方面效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Fixed External Shading Devices on Daylighting and Thermal Comfort in Residential Building
Building shading devices can improve the thermal comfort in indoor environment, and also reduce cooling and heating energy consumption in dry and hot climate. This study proposes the different kind of window’s fixed shading devices for energy consumption under near-extreme summer and winter conditions by conducting residential building energy simulations in Shiraz climate. Which fixed shading devices optimal configurations that give maximum energy consumption can be used in Shiraz climate. The study was based on modeling-simulation experiments where Ecotect models resented the actual building energy with and without shading devices to reducing heating and cooling load and peak consumption. The results obtained confirmed the accuracy of the model and the suitability of (horizontal, eggcrate and geometrical) of shading devices in reducing the solar gains in summer with reduced blocking of solar radiation in winter. In all cases it has been proven that excessive obstruction may yield an excessive reduction in a range of illuminances between 500 and 2000 lux, increasing lighting energy consumption. At the end results showed that horizontal, geometrical and eggcrate have the best function according to reduce energy and have enough day lighting in the zones in shiraz climate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Daylighting
Journal of Daylighting Energy-Renewable Energy, Sustainability and the Environment
CiteScore
4.00
自引率
0.00%
发文量
18
审稿时长
10 weeks
期刊介绍: Journal of Daylighting is an international journal devoted to investigations of daylighting in buildings. It is the leading journal that publishes original research on all aspects of solar energy and lighting. Areas of special interest for this journal include, but are not limited to, the following: -Daylighting systems -Lighting simulation -Lighting designs -Luminaires -Lighting metrology and light quality -Lighting control -Building physics - lighting -Building energy modeling -Energy efficient buildings -Zero-energy buildings -Indoor environment quality -Sustainable solar energy systems -Application of solar energy sources in buildings -Photovoltaics systems -Building-integrated photovoltaics -Concentrator technology -Concentrator photovoltaic -Solar thermal
期刊最新文献
Synergistic Strategies: Comparing Energy Performance in Climate-Adaptive Building Envelopes for Iran's Cold Semi-Arid Climate Exploring Methodological Considerations: A Literature Review on How Lighting Affects the Sleep and Cognition in Healthy Older Adults Enhancing Visual Comfort and Energy Efficiency in Office Lighting Using Parametric-Generative Design Approach for Interactive Kinetic Louvers Electrochromic Glazing and Evaluation of Visual and Non-Visual Effects of Daylight: Simulation Studies for Brasilia – Brazil Analysing the Daylighting Performance of the Main Prayer-hall in the Great Mosque of Hama, Syria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1