{"title":"通过增加n体合并树实现星系形成模型的收敛","authors":"Andrew J Benson, Chris Cannella, Shaun Cole","doi":"10.1186/s40668-016-0016-3","DOIUrl":null,"url":null,"abstract":"<p>Accurate modeling of galaxy formation in a hierarchical, cold dark matter universe requires the use of sufficiently high-resolution merger trees to obtain convergence in the predicted properties of galaxies. When semi-analytic galaxy formation models are applied to cosmological <i>N</i>-body simulation merger trees, it is often the case that those trees have insufficient resolution to give converged galaxy properties. We demonstrate a method to augment the resolution of <i>N</i>-body merger trees by grafting in branches of Monte Carlo merger trees with higher resolution, but which are consistent with the pre-existing branches in the <i>N</i>-body tree. We show that this approach leads to converged galaxy properties.</p>","PeriodicalId":523,"journal":{"name":"Computational Astrophysics and Cosmology","volume":null,"pages":null},"PeriodicalIF":16.2810,"publicationDate":"2016-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40668-016-0016-3","citationCount":"3","resultStr":"{\"title\":\"Achieving convergence in galaxy formation models by augmenting N-body merger trees\",\"authors\":\"Andrew J Benson, Chris Cannella, Shaun Cole\",\"doi\":\"10.1186/s40668-016-0016-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate modeling of galaxy formation in a hierarchical, cold dark matter universe requires the use of sufficiently high-resolution merger trees to obtain convergence in the predicted properties of galaxies. When semi-analytic galaxy formation models are applied to cosmological <i>N</i>-body simulation merger trees, it is often the case that those trees have insufficient resolution to give converged galaxy properties. We demonstrate a method to augment the resolution of <i>N</i>-body merger trees by grafting in branches of Monte Carlo merger trees with higher resolution, but which are consistent with the pre-existing branches in the <i>N</i>-body tree. We show that this approach leads to converged galaxy properties.</p>\",\"PeriodicalId\":523,\"journal\":{\"name\":\"Computational Astrophysics and Cosmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.2810,\"publicationDate\":\"2016-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40668-016-0016-3\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Astrophysics and Cosmology\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40668-016-0016-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Astrophysics and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s40668-016-0016-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving convergence in galaxy formation models by augmenting N-body merger trees
Accurate modeling of galaxy formation in a hierarchical, cold dark matter universe requires the use of sufficiently high-resolution merger trees to obtain convergence in the predicted properties of galaxies. When semi-analytic galaxy formation models are applied to cosmological N-body simulation merger trees, it is often the case that those trees have insufficient resolution to give converged galaxy properties. We demonstrate a method to augment the resolution of N-body merger trees by grafting in branches of Monte Carlo merger trees with higher resolution, but which are consistent with the pre-existing branches in the N-body tree. We show that this approach leads to converged galaxy properties.
期刊介绍:
Computational Astrophysics and Cosmology (CompAC) is now closed and no longer accepting submissions. However, we would like to assure you that Springer will maintain an archive of all articles published in CompAC, ensuring their accessibility through SpringerLink's comprehensive search functionality.