城市汽车场景下的机器学习联合激光雷达和雷达分类系统

IF 0.6 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Advances in Radio Science Pub Date : 2019-09-19 DOI:10.5194/ars-17-129-2019
R. Pérez, F. Schubert, R. Rasshofer, E. Biebl
{"title":"城市汽车场景下的机器学习联合激光雷达和雷达分类系统","authors":"R. Pérez, F. Schubert, R. Rasshofer, E. Biebl","doi":"10.5194/ars-17-129-2019","DOIUrl":null,"url":null,"abstract":"Abstract. This work presents an approach to classify road users as pedestrians, cyclists or cars using a lidar sensor and a radar sensor. The lidar is used to detect moving road users in the surroundings of the car. A 2-dimensional range-Doppler window, a so called region of interest, of the radar power spectrum centered at the object's position is cut out and fed into a convolutional neural network to be classified. With this approach it is possible to classify multiple moving objects within a single radar measurement frame. The convolutional neural network is trained using data gathered with a test vehicle in real urban scenarios. An overall classification accuracy as high as 0.91 is achieved with this approach. The accuracy can be improved to 0.94 after applying a discrete Bayes filter on top of the classifier.\n","PeriodicalId":45093,"journal":{"name":"Advances in Radio Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A machine learning joint lidar and radar classification system in urban automotive scenarios\",\"authors\":\"R. Pérez, F. Schubert, R. Rasshofer, E. Biebl\",\"doi\":\"10.5194/ars-17-129-2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. This work presents an approach to classify road users as pedestrians, cyclists or cars using a lidar sensor and a radar sensor. The lidar is used to detect moving road users in the surroundings of the car. A 2-dimensional range-Doppler window, a so called region of interest, of the radar power spectrum centered at the object's position is cut out and fed into a convolutional neural network to be classified. With this approach it is possible to classify multiple moving objects within a single radar measurement frame. The convolutional neural network is trained using data gathered with a test vehicle in real urban scenarios. An overall classification accuracy as high as 0.91 is achieved with this approach. The accuracy can be improved to 0.94 after applying a discrete Bayes filter on top of the classifier.\\n\",\"PeriodicalId\":45093,\"journal\":{\"name\":\"Advances in Radio Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Radio Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/ars-17-129-2019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radio Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ars-17-129-2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 15

摘要

摘要这项工作提出了一种使用激光雷达传感器和雷达传感器将道路使用者分类为行人、骑自行车者或汽车的方法。激光雷达用于探测汽车周围移动的道路使用者。以目标位置为中心的雷达功率谱的二维距离-多普勒窗口,即所谓的兴趣区域,被切断并输入卷积神经网络进行分类。使用这种方法,可以在单个雷达测量帧内对多个运动物体进行分类。卷积神经网络是使用真实城市场景中测试车辆收集的数据进行训练的。该方法的总体分类精度高达0.91。在分类器上应用离散贝叶斯滤波器后,准确率可以提高到0.94。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A machine learning joint lidar and radar classification system in urban automotive scenarios
Abstract. This work presents an approach to classify road users as pedestrians, cyclists or cars using a lidar sensor and a radar sensor. The lidar is used to detect moving road users in the surroundings of the car. A 2-dimensional range-Doppler window, a so called region of interest, of the radar power spectrum centered at the object's position is cut out and fed into a convolutional neural network to be classified. With this approach it is possible to classify multiple moving objects within a single radar measurement frame. The convolutional neural network is trained using data gathered with a test vehicle in real urban scenarios. An overall classification accuracy as high as 0.91 is achieved with this approach. The accuracy can be improved to 0.94 after applying a discrete Bayes filter on top of the classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Radio Science
Advances in Radio Science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
0.90
自引率
0.00%
发文量
3
审稿时长
45 weeks
期刊最新文献
MmWave scattering properties of roads on rough asphalt and concrete surfaces Y-shaped tunable monolithic dual colour lasers for THz technology Egbert von Lepel and the Invention of the Spark-Gap Transmitter Long-term trends of midlatitude horizontal mesosphere/lower thermosphere winds over four decades Approximation of High Intensity Radiated Field by Direct Current Injection using matrix methods based on Characteristic Mode Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1