感知电迁移的内存层次结构

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Low Power Electronics and Applications Pub Date : 2023-07-11 DOI:10.3390/jlpea13030044
F. Gabbay, A. Mendelson
{"title":"感知电迁移的内存层次结构","authors":"F. Gabbay, A. Mendelson","doi":"10.3390/jlpea13030044","DOIUrl":null,"url":null,"abstract":"New mission-critical applications, such as autonomous vehicles and life-support systems, set a high bar for the reliability of modern microprocessors that operate in highly challenging conditions. However, while cutting-edge integrated circuit (IC) technologies have intensified microprocessors by providing remarkable reductions in the silicon area and power consumption, they also introduce new reliability challenges through the complex design rules they impose, creating a significant hurdle in the design process. In this paper, we focus on electromigration (EM), which is a crucial factor impacting IC reliability. EM refers to the degradation process of IC metal nets when used for both power supply and interconnecting signals. Typically, EM concerns have been addressed at the backend, circuit, and layout levels, where EM rules are enforced assuming extreme conditions to identify and resolve violations. This study presents new techniques that leverage architectural features to mitigate the effect of EM on the memory hierarchy of modern microprocessors. Architectural approaches can reduce the complexity of solving EM-related violations, and they can also complement and enhance common existing methods. In this study, we present a comprehensive simulation analysis that demonstrates how the proposed solution can significantly extend the lifetime of a microprocessor’s memory hierarchy with minimal overhead in terms of performance, power, and area while relaxing EM design efforts.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromigration-Aware Memory Hierarchy Architecture\",\"authors\":\"F. Gabbay, A. Mendelson\",\"doi\":\"10.3390/jlpea13030044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New mission-critical applications, such as autonomous vehicles and life-support systems, set a high bar for the reliability of modern microprocessors that operate in highly challenging conditions. However, while cutting-edge integrated circuit (IC) technologies have intensified microprocessors by providing remarkable reductions in the silicon area and power consumption, they also introduce new reliability challenges through the complex design rules they impose, creating a significant hurdle in the design process. In this paper, we focus on electromigration (EM), which is a crucial factor impacting IC reliability. EM refers to the degradation process of IC metal nets when used for both power supply and interconnecting signals. Typically, EM concerns have been addressed at the backend, circuit, and layout levels, where EM rules are enforced assuming extreme conditions to identify and resolve violations. This study presents new techniques that leverage architectural features to mitigate the effect of EM on the memory hierarchy of modern microprocessors. Architectural approaches can reduce the complexity of solving EM-related violations, and they can also complement and enhance common existing methods. In this study, we present a comprehensive simulation analysis that demonstrates how the proposed solution can significantly extend the lifetime of a microprocessor’s memory hierarchy with minimal overhead in terms of performance, power, and area while relaxing EM design efforts.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea13030044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea13030044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

新的关键任务应用,如自动驾驶汽车和生命支持系统,为在极具挑战性的条件下运行的现代微处理器的可靠性设定了很高的标准。然而,尽管尖端集成电路(IC)技术通过显著减少硅面积和功耗,增强了微处理器的性能,但它们所施加的复杂设计规则也带来了新的可靠性挑战,在设计过程中造成了重大障碍。本文重点研究了影响集成电路可靠性的关键因素——电迁移问题。EM是指集成电路金属网同时用于供电和互连信号时的退化过程。通常,EM问题已经在后端、电路和布局级别得到解决,在这些级别中,EM规则被强制执行,假设极端条件来识别和解决违规行为。本研究提出了利用体系结构特征来减轻EM对现代微处理器内存层次的影响的新技术。体系结构方法可以降低解决em相关违规的复杂性,它们还可以补充和增强常见的现有方法。在这项研究中,我们提出了一个全面的仿真分析,展示了所提出的解决方案如何显著延长微处理器内存层次结构的使用寿命,同时在性能、功耗和面积方面的开销最小,同时放松了EM设计工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electromigration-Aware Memory Hierarchy Architecture
New mission-critical applications, such as autonomous vehicles and life-support systems, set a high bar for the reliability of modern microprocessors that operate in highly challenging conditions. However, while cutting-edge integrated circuit (IC) technologies have intensified microprocessors by providing remarkable reductions in the silicon area and power consumption, they also introduce new reliability challenges through the complex design rules they impose, creating a significant hurdle in the design process. In this paper, we focus on electromigration (EM), which is a crucial factor impacting IC reliability. EM refers to the degradation process of IC metal nets when used for both power supply and interconnecting signals. Typically, EM concerns have been addressed at the backend, circuit, and layout levels, where EM rules are enforced assuming extreme conditions to identify and resolve violations. This study presents new techniques that leverage architectural features to mitigate the effect of EM on the memory hierarchy of modern microprocessors. Architectural approaches can reduce the complexity of solving EM-related violations, and they can also complement and enhance common existing methods. In this study, we present a comprehensive simulation analysis that demonstrates how the proposed solution can significantly extend the lifetime of a microprocessor’s memory hierarchy with minimal overhead in terms of performance, power, and area while relaxing EM design efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Low Power Electronics and Applications
Journal of Low Power Electronics and Applications Engineering-Electrical and Electronic Engineering
CiteScore
3.60
自引率
14.30%
发文量
57
审稿时长
11 weeks
期刊最新文献
Understanding Timing Error Characteristics from Overclocked Systolic Multiply–Accumulate Arrays in FPGAs Design and Assessment of Hybrid MTJ/CMOS Circuits for In-Memory-Computation Speed, Power and Area Optimized Monotonic Asynchronous Array Multipliers An Ultra Low Power Integer-N PLL with a High-Gain Sampling Phase Detector for IOT Applications in 65 nm CMOS Design of a Low-Power Delay-Locked Loop-Based 8× Frequency Multiplier in 22 nm FDSOI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1