采用简单的两步法制备了抗菌耐磨纳米zno /PEEK复合材料。

Ting-Yu Wu, Xinyue Zhang, Kai Chen, Qin Chen, Zhenyang Yu, Cunao Feng, J. Qi, Dekun Zhang
{"title":"采用简单的两步法制备了抗菌耐磨纳米zno /PEEK复合材料。","authors":"Ting-Yu Wu, Xinyue Zhang, Kai Chen, Qin Chen, Zhenyang Yu, Cunao Feng, J. Qi, Dekun Zhang","doi":"10.2139/ssrn.3949517","DOIUrl":null,"url":null,"abstract":"Although the polyether ether ketone (PEEK) has excellent comprehensive properties, its non-antibacterial and low wear-resistant limit the wide application in the field of artificial joint materials. In this paper, Nano-ZnO was generated in situ on the surface of PEEK powder by one-step hydrothermal method, which improved the binding force of Nano-ZnO and PEEK matrix. Then the PEEK-based nanocomposites were prepared by melt blending with the synthesized Nano-ZnO-PEEK powders and PEEK powders. The microstructure, mechanical, biological and tribological properties of PEEK-based nanocomposites were studied. The results showed that the compressive strength of PEEK-based nanocomposites can reach up to 319.2 ± 2.4 MPa. Both PEEK and PEEK-based nanocomposites were non-toxic to cells. Meanwhile, PEEK-based nanocomposites showed good antibacterial activity against E.coli and Staphylococcus aureus, and the antibacterial activity was better with the increase of Nano-ZnO content. In addition, when the Nano-ZnO content was 5%, the wear rate of PEEK-based nanocomposites was about 68% lower than that of pure PEEK materials. Thus, PEEK-based nanocomposites has a dual function of good antibacterial property and excellent wear resistance.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"126 1","pages":"104986"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The antibacterial and wear-resistant nano-ZnO/PEEK composites were constructed by a simple two-step method.\",\"authors\":\"Ting-Yu Wu, Xinyue Zhang, Kai Chen, Qin Chen, Zhenyang Yu, Cunao Feng, J. Qi, Dekun Zhang\",\"doi\":\"10.2139/ssrn.3949517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the polyether ether ketone (PEEK) has excellent comprehensive properties, its non-antibacterial and low wear-resistant limit the wide application in the field of artificial joint materials. In this paper, Nano-ZnO was generated in situ on the surface of PEEK powder by one-step hydrothermal method, which improved the binding force of Nano-ZnO and PEEK matrix. Then the PEEK-based nanocomposites were prepared by melt blending with the synthesized Nano-ZnO-PEEK powders and PEEK powders. The microstructure, mechanical, biological and tribological properties of PEEK-based nanocomposites were studied. The results showed that the compressive strength of PEEK-based nanocomposites can reach up to 319.2 ± 2.4 MPa. Both PEEK and PEEK-based nanocomposites were non-toxic to cells. Meanwhile, PEEK-based nanocomposites showed good antibacterial activity against E.coli and Staphylococcus aureus, and the antibacterial activity was better with the increase of Nano-ZnO content. In addition, when the Nano-ZnO content was 5%, the wear rate of PEEK-based nanocomposites was about 68% lower than that of pure PEEK materials. Thus, PEEK-based nanocomposites has a dual function of good antibacterial property and excellent wear resistance.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"126 1\",\"pages\":\"104986\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3949517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.3949517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

聚醚醚酮(PEEK)虽然具有优异的综合性能,但其非抗菌性和低耐磨性限制了其在人工关节材料领域的广泛应用。本文采用一步水热法在PEEK粉末表面原位生成纳米ZnO,提高了纳米ZnO与PEEK基体的结合力。然后将合成的纳米ZnO PEEK粉末和PEEK粉末熔融共混,制备了PEEK基纳米复合材料。研究了PEEK基纳米复合材料的微观结构、力学性能、生物性能和摩擦学性能。结果表明,PEEK基纳米复合材料的抗压强度可达319.2±2.4MPa,PEEK和PEEK基复合材料均对细胞无毒。同时,PEEK基纳米复合材料对大肠杆菌和金黄色葡萄球菌表现出良好的抗菌活性,并且随着纳米ZnO含量的增加,抗菌活性更好。此外,当纳米ZnO含量为5%时,PEEK基纳米复合材料的磨损率比纯PEEK材料低约68%。因此,PEEK基纳米复合材料具有良好的抗菌性能和优异的耐磨性双重功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The antibacterial and wear-resistant nano-ZnO/PEEK composites were constructed by a simple two-step method.
Although the polyether ether ketone (PEEK) has excellent comprehensive properties, its non-antibacterial and low wear-resistant limit the wide application in the field of artificial joint materials. In this paper, Nano-ZnO was generated in situ on the surface of PEEK powder by one-step hydrothermal method, which improved the binding force of Nano-ZnO and PEEK matrix. Then the PEEK-based nanocomposites were prepared by melt blending with the synthesized Nano-ZnO-PEEK powders and PEEK powders. The microstructure, mechanical, biological and tribological properties of PEEK-based nanocomposites were studied. The results showed that the compressive strength of PEEK-based nanocomposites can reach up to 319.2 ± 2.4 MPa. Both PEEK and PEEK-based nanocomposites were non-toxic to cells. Meanwhile, PEEK-based nanocomposites showed good antibacterial activity against E.coli and Staphylococcus aureus, and the antibacterial activity was better with the increase of Nano-ZnO content. In addition, when the Nano-ZnO content was 5%, the wear rate of PEEK-based nanocomposites was about 68% lower than that of pure PEEK materials. Thus, PEEK-based nanocomposites has a dual function of good antibacterial property and excellent wear resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to "Elastic constants of biogenic calcium carbonate" (155), 106570. Editorial Board An improved trabecular bone model based on Voronoi tessellation. Patient-specific finite element analysis of human corneal lenticules: An experimental and numerical study. Multistep deformation of helical fiber electrospun scaffold toward cardiac patches development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1