利用无人机评估剩余刀削林覆盖率及其对白杨再生的影响

IF 1.3 Q3 REMOTE SENSING Journal of Unmanned Vehicle Systems Pub Date : 2020-03-01 DOI:10.1139/juvs-2019-0001
L. Sealey, K. Rees
{"title":"利用无人机评估剩余刀削林覆盖率及其对白杨再生的影响","authors":"L. Sealey, K. Rees","doi":"10.1139/juvs-2019-0001","DOIUrl":null,"url":null,"abstract":"Proper redistribution of residual slash following harvesting is crucial for ensuring successful regeneration and continued health in trembling aspen (Populus tremuloides) forests. As traditional methods of measuring residual slash are a strenuous and tedious process, the objective of this study was to develop a new, faster, and more detailed method to assess residual slash distribution for entire harvested blocks. This study also aimed to assess the influence residual slash coverage had on the success of aspen regeneration 1 year after winter harvesting. Using high-resolution UAV imagery and maximum likelihood supervised image classification, residual slash was differentiated from the underlying forest floor. Overall, classification accuracy ranged between 85% and 96% with the highest accuracy occurring when aerial imagery was collected at the beginning of the second spring following winter harvesting. Slash distribution was quite consistent across harvested blocks, with 92% of harvested blocks experiencing <33% coverage. There was no relationship between the level of aspen regeneration following 1 year of growth and percentage slash coverage up to 60%. No vegetation plots occurred in areas with >60% slash coverage; therefore, it is unknown whether aspen regeneration will be affected in areas with higher slash coverage.","PeriodicalId":45619,"journal":{"name":"Journal of Unmanned Vehicle Systems","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/juvs-2019-0001","citationCount":"3","resultStr":"{\"title\":\"Assessment of residual slash coverage using UAVs and implications for aspen regeneration\",\"authors\":\"L. Sealey, K. Rees\",\"doi\":\"10.1139/juvs-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proper redistribution of residual slash following harvesting is crucial for ensuring successful regeneration and continued health in trembling aspen (Populus tremuloides) forests. As traditional methods of measuring residual slash are a strenuous and tedious process, the objective of this study was to develop a new, faster, and more detailed method to assess residual slash distribution for entire harvested blocks. This study also aimed to assess the influence residual slash coverage had on the success of aspen regeneration 1 year after winter harvesting. Using high-resolution UAV imagery and maximum likelihood supervised image classification, residual slash was differentiated from the underlying forest floor. Overall, classification accuracy ranged between 85% and 96% with the highest accuracy occurring when aerial imagery was collected at the beginning of the second spring following winter harvesting. Slash distribution was quite consistent across harvested blocks, with 92% of harvested blocks experiencing <33% coverage. There was no relationship between the level of aspen regeneration following 1 year of growth and percentage slash coverage up to 60%. No vegetation plots occurred in areas with >60% slash coverage; therefore, it is unknown whether aspen regeneration will be affected in areas with higher slash coverage.\",\"PeriodicalId\":45619,\"journal\":{\"name\":\"Journal of Unmanned Vehicle Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1139/juvs-2019-0001\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Unmanned Vehicle Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/juvs-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Unmanned Vehicle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/juvs-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 3

摘要

采伐后残留刀削林的适当重新分配对于确保颤杨林的成功更新和持续健康至关重要。由于传统的剩余斜线测量方法是一个费力和繁琐的过程,本研究的目的是开发一种新的、更快、更详细的方法来评估整个采伐区块的剩余斜线分布。本研究还旨在评估残割盖度对冬收后1年杨树再生成功的影响。利用高分辨率无人机图像和最大似然监督图像分类,将剩余斜线与下伏森林地面区分开来。总的来说,分类准确率在85%到96%之间,在冬季收获后的第二个春天开始收集航空图像时,准确率最高。斜线在采伐区块的分布相当一致,92%的采伐区块的斜线覆盖率为60%;因此,尚不清楚在刀削林覆盖率较高的地区,白杨的再生是否会受到影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of residual slash coverage using UAVs and implications for aspen regeneration
Proper redistribution of residual slash following harvesting is crucial for ensuring successful regeneration and continued health in trembling aspen (Populus tremuloides) forests. As traditional methods of measuring residual slash are a strenuous and tedious process, the objective of this study was to develop a new, faster, and more detailed method to assess residual slash distribution for entire harvested blocks. This study also aimed to assess the influence residual slash coverage had on the success of aspen regeneration 1 year after winter harvesting. Using high-resolution UAV imagery and maximum likelihood supervised image classification, residual slash was differentiated from the underlying forest floor. Overall, classification accuracy ranged between 85% and 96% with the highest accuracy occurring when aerial imagery was collected at the beginning of the second spring following winter harvesting. Slash distribution was quite consistent across harvested blocks, with 92% of harvested blocks experiencing <33% coverage. There was no relationship between the level of aspen regeneration following 1 year of growth and percentage slash coverage up to 60%. No vegetation plots occurred in areas with >60% slash coverage; therefore, it is unknown whether aspen regeneration will be affected in areas with higher slash coverage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
2
期刊最新文献
An examination of trends in the growing scientific literature on approaching wildlife with drones The utility of drones for studying polar bear behaviour in the Canadian Arctic: opportunities and recommendations Detection and tracking of belugas, kayaks and motorized boats in drone video using deep learning Potential Cyber Threats, Vulnerabilities, and Protections of Unmanned Vehicles Pilots’ Willingness to Operate in Urban Air Mobility Integrated Airspace: A Moderated Mediation Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1