Xu Liu, Jian Wang, Jie Zhen, Houzeng Han, C. Hancock
{"title":"GNSS辅助加速度计频域积分法监测结构动态位移","authors":"Xu Liu, Jian Wang, Jie Zhen, Houzeng Han, C. Hancock","doi":"10.1080/19479832.2021.1967468","DOIUrl":null,"url":null,"abstract":"ABSTRACT The accelerometer frequency domain integration approach (FDIA) is being actively applied to calculate dynamic displacement responses of large engineering structures. However, it is a relative acceleration measurement as the initial position is unavailable. GNSS offers direct displacement measurements, but has the limitation of relatively low frequency of data compared with alternative measurement techniques. Therefore, this paper proposes an improved FDIA utilising the advantages of GNSS to gain accurate information about the initial position. The performance of the proposed approach is first validated through software simulation. Following the validation, a series of shaking table tests using various vibration frequencies (0.5 HZ, 1 HZ, 1.5 HZ, 2 HZ and 2.5 HZ) are performed at the south square of Beijing University of Civil Engineering and Architecture (BUCEA) using one GNSS receiver and one accelerometer. The results show that the proposed approach can effectively avoid the uncertainty of the initial value and thus enhance the direct measurement accuracy of the dynamic displacements of structures, with root mean square error (RMSE) decreasing from 11.4 mm to 6.8 mm.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":"12 1","pages":"268 - 281"},"PeriodicalIF":1.8000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GNSS-aided accelerometer frequency domain integration approach to monitor structural dynamic displacements\",\"authors\":\"Xu Liu, Jian Wang, Jie Zhen, Houzeng Han, C. Hancock\",\"doi\":\"10.1080/19479832.2021.1967468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The accelerometer frequency domain integration approach (FDIA) is being actively applied to calculate dynamic displacement responses of large engineering structures. However, it is a relative acceleration measurement as the initial position is unavailable. GNSS offers direct displacement measurements, but has the limitation of relatively low frequency of data compared with alternative measurement techniques. Therefore, this paper proposes an improved FDIA utilising the advantages of GNSS to gain accurate information about the initial position. The performance of the proposed approach is first validated through software simulation. Following the validation, a series of shaking table tests using various vibration frequencies (0.5 HZ, 1 HZ, 1.5 HZ, 2 HZ and 2.5 HZ) are performed at the south square of Beijing University of Civil Engineering and Architecture (BUCEA) using one GNSS receiver and one accelerometer. The results show that the proposed approach can effectively avoid the uncertainty of the initial value and thus enhance the direct measurement accuracy of the dynamic displacements of structures, with root mean square error (RMSE) decreasing from 11.4 mm to 6.8 mm.\",\"PeriodicalId\":46012,\"journal\":{\"name\":\"International Journal of Image and Data Fusion\",\"volume\":\"12 1\",\"pages\":\"268 - 281\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Data Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19479832.2021.1967468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2021.1967468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
GNSS-aided accelerometer frequency domain integration approach to monitor structural dynamic displacements
ABSTRACT The accelerometer frequency domain integration approach (FDIA) is being actively applied to calculate dynamic displacement responses of large engineering structures. However, it is a relative acceleration measurement as the initial position is unavailable. GNSS offers direct displacement measurements, but has the limitation of relatively low frequency of data compared with alternative measurement techniques. Therefore, this paper proposes an improved FDIA utilising the advantages of GNSS to gain accurate information about the initial position. The performance of the proposed approach is first validated through software simulation. Following the validation, a series of shaking table tests using various vibration frequencies (0.5 HZ, 1 HZ, 1.5 HZ, 2 HZ and 2.5 HZ) are performed at the south square of Beijing University of Civil Engineering and Architecture (BUCEA) using one GNSS receiver and one accelerometer. The results show that the proposed approach can effectively avoid the uncertainty of the initial value and thus enhance the direct measurement accuracy of the dynamic displacements of structures, with root mean square error (RMSE) decreasing from 11.4 mm to 6.8 mm.
期刊介绍:
International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).