{"title":"非经典边界条件对悬臂欧拉-伯努利梁自由振动响应的影响","authors":"Abderrachid Afras, A. El Ghoulbzouri","doi":"10.29354/diag/158075","DOIUrl":null,"url":null,"abstract":"In this article, the problem of the free vibration behavior of a cantilever Euler-Bernoulli beam with various non-classical boundary conditions, such as rotational, translational spring, and attached mass is investigated. For describing the differential equation of the system. An analytical procedure is proposed firstly, and a numerical method based on the differential transform method DTM is developed in order to validate the obtained results. A parametric study for various degenerate cases is presented with the aim to analyze the influence of rotational stiffness, vertical stiffness, and mass ratio on the free vibration response of the beam, particularly on its modal characteristics. The results show that the non-classical boundary conditions significantly affect the natural frequency and mode shapes of the studied beam system in comparison to the case of a classical boundary conditions such as Simply supported, clamped-clamped, etc. The comparison between the obtained results based on the proposed analytical solution and numerical scheme, and those available in the literature shows an excellent agreement.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of non-classical boundary conditions on the free vibration response of a cantilever Euler-Bernoulli beams\",\"authors\":\"Abderrachid Afras, A. El Ghoulbzouri\",\"doi\":\"10.29354/diag/158075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the problem of the free vibration behavior of a cantilever Euler-Bernoulli beam with various non-classical boundary conditions, such as rotational, translational spring, and attached mass is investigated. For describing the differential equation of the system. An analytical procedure is proposed firstly, and a numerical method based on the differential transform method DTM is developed in order to validate the obtained results. A parametric study for various degenerate cases is presented with the aim to analyze the influence of rotational stiffness, vertical stiffness, and mass ratio on the free vibration response of the beam, particularly on its modal characteristics. The results show that the non-classical boundary conditions significantly affect the natural frequency and mode shapes of the studied beam system in comparison to the case of a classical boundary conditions such as Simply supported, clamped-clamped, etc. The comparison between the obtained results based on the proposed analytical solution and numerical scheme, and those available in the literature shows an excellent agreement.\",\"PeriodicalId\":52164,\"journal\":{\"name\":\"Diagnostyka\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29354/diag/158075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/158075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Effects of non-classical boundary conditions on the free vibration response of a cantilever Euler-Bernoulli beams
In this article, the problem of the free vibration behavior of a cantilever Euler-Bernoulli beam with various non-classical boundary conditions, such as rotational, translational spring, and attached mass is investigated. For describing the differential equation of the system. An analytical procedure is proposed firstly, and a numerical method based on the differential transform method DTM is developed in order to validate the obtained results. A parametric study for various degenerate cases is presented with the aim to analyze the influence of rotational stiffness, vertical stiffness, and mass ratio on the free vibration response of the beam, particularly on its modal characteristics. The results show that the non-classical boundary conditions significantly affect the natural frequency and mode shapes of the studied beam system in comparison to the case of a classical boundary conditions such as Simply supported, clamped-clamped, etc. The comparison between the obtained results based on the proposed analytical solution and numerical scheme, and those available in the literature shows an excellent agreement.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.