{"title":"Hg2Cl2化合物的温度相关相变和负热膨胀:第一性原理DFT和Born-Oppenheimer动态分子动力学计算的启示","authors":"S. Ghosh, Joydeep Chowdhury","doi":"10.1080/01411594.2023.2209258","DOIUrl":null,"url":null,"abstract":"ABSTRACT The paper is aimed to understand the key phonon modes that are responsible for the temperature dependent structural phase transition and negative thermal expansion of Hg2Cl2 compound for the first time with the aid of density functional theory and Born-Oppenheimer on the fly molecular dynamics calculations. The phonon dispersion spectra, phonon density of states and Grüneisen parameters for the body-centered tetragonal and base-centered orthorhombic phases of the compound have been explored in detail. The order parameter associated with the phase transition and its nature has also been reported herewith. We believe that the present study will not only help for futuristic designs of improved functionalized systems with Hg2Cl2 compound but also can augment their applications in thermoelectric conversion systems, fibre-optic communications, thermal expansion compensators and in fuel cells.","PeriodicalId":19881,"journal":{"name":"Phase Transitions","volume":"96 1","pages":"446 - 463"},"PeriodicalIF":1.3000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependent phase transition and negative thermal expansion of Hg2Cl2 compound: insights from first-principle DFT and Born-Oppenheimer on the fly molecular dynamics calculations\",\"authors\":\"S. Ghosh, Joydeep Chowdhury\",\"doi\":\"10.1080/01411594.2023.2209258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The paper is aimed to understand the key phonon modes that are responsible for the temperature dependent structural phase transition and negative thermal expansion of Hg2Cl2 compound for the first time with the aid of density functional theory and Born-Oppenheimer on the fly molecular dynamics calculations. The phonon dispersion spectra, phonon density of states and Grüneisen parameters for the body-centered tetragonal and base-centered orthorhombic phases of the compound have been explored in detail. The order parameter associated with the phase transition and its nature has also been reported herewith. We believe that the present study will not only help for futuristic designs of improved functionalized systems with Hg2Cl2 compound but also can augment their applications in thermoelectric conversion systems, fibre-optic communications, thermal expansion compensators and in fuel cells.\",\"PeriodicalId\":19881,\"journal\":{\"name\":\"Phase Transitions\",\"volume\":\"96 1\",\"pages\":\"446 - 463\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phase Transitions\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/01411594.2023.2209258\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phase Transitions","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/01411594.2023.2209258","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Temperature dependent phase transition and negative thermal expansion of Hg2Cl2 compound: insights from first-principle DFT and Born-Oppenheimer on the fly molecular dynamics calculations
ABSTRACT The paper is aimed to understand the key phonon modes that are responsible for the temperature dependent structural phase transition and negative thermal expansion of Hg2Cl2 compound for the first time with the aid of density functional theory and Born-Oppenheimer on the fly molecular dynamics calculations. The phonon dispersion spectra, phonon density of states and Grüneisen parameters for the body-centered tetragonal and base-centered orthorhombic phases of the compound have been explored in detail. The order parameter associated with the phase transition and its nature has also been reported herewith. We believe that the present study will not only help for futuristic designs of improved functionalized systems with Hg2Cl2 compound but also can augment their applications in thermoelectric conversion systems, fibre-optic communications, thermal expansion compensators and in fuel cells.
期刊介绍:
Phase Transitions is the only journal devoted exclusively to this important subject. It provides a focus for papers on most aspects of phase transitions in condensed matter. Although emphasis is placed primarily on experimental work, theoretical papers are welcome if they have some bearing on experimental results. The areas of interest include:
-structural phase transitions (ferroelectric, ferroelastic, multiferroic, order-disorder, Jahn-Teller, etc.) under a range of external parameters (temperature, pressure, strain, electric/magnetic fields, etc.)
-geophysical phase transitions
-metal-insulator phase transitions
-superconducting and superfluid transitions
-magnetic phase transitions
-critical phenomena and physical properties at phase transitions
-liquid crystals
-technological applications of phase transitions
-quantum phase transitions
Phase Transitions publishes both research papers and invited articles devoted to special topics. Major review papers are particularly welcome. A further emphasis of the journal is the publication of a selected number of small workshops, which are at the forefront of their field.