{"title":"水热热处理时间对介孔纳米tio2合成的影响","authors":"L. M. Santos, D. Silva, M. R. Santos, A. Machado","doi":"10.1590/0366-69132021673843084","DOIUrl":null,"url":null,"abstract":"Mesoporous TiO 2 nanoparticles were synthesized by the sol-gel method and using hydrothermal treatment at 200 ºC during different time intervals, which allowed the evaluation of the time or the treatment on the structural, morphological, and optical properties of the oxides. TEM micrographs showed that the morphology of the materials was characterized by the presence of spherical clusters, while the crystalline phases of the anatase and brookite mixtures were analyzed by X-ray diffraction and Raman spectroscopy. A type IV profile was identified from the results of specific surface area, which is characteristic of the mesoporous material with strong and weak affinity. The band gap in the range of 3.29 and 3.40 eV, estimated by the Kubelka-Munk function, showed a gradual increase as a result of oxide crystallization. It was found that 8 h of treatment in a hydrothermal system was sufficient to synthesize a photocatalyst with optimal photocatalytic performance. This efficiency was probably based on a good correlation between physical and chemical factors, such as high surface area and porosity, the improved capability of photon adsorption in the visible range, crystallinity, and a favorable content of brookite.","PeriodicalId":9824,"journal":{"name":"Cerâmica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of time of hydrothermal heat treatment on mesoporous nano-TiO2 synthesis\",\"authors\":\"L. M. Santos, D. Silva, M. R. Santos, A. Machado\",\"doi\":\"10.1590/0366-69132021673843084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mesoporous TiO 2 nanoparticles were synthesized by the sol-gel method and using hydrothermal treatment at 200 ºC during different time intervals, which allowed the evaluation of the time or the treatment on the structural, morphological, and optical properties of the oxides. TEM micrographs showed that the morphology of the materials was characterized by the presence of spherical clusters, while the crystalline phases of the anatase and brookite mixtures were analyzed by X-ray diffraction and Raman spectroscopy. A type IV profile was identified from the results of specific surface area, which is characteristic of the mesoporous material with strong and weak affinity. The band gap in the range of 3.29 and 3.40 eV, estimated by the Kubelka-Munk function, showed a gradual increase as a result of oxide crystallization. It was found that 8 h of treatment in a hydrothermal system was sufficient to synthesize a photocatalyst with optimal photocatalytic performance. This efficiency was probably based on a good correlation between physical and chemical factors, such as high surface area and porosity, the improved capability of photon adsorption in the visible range, crystallinity, and a favorable content of brookite.\",\"PeriodicalId\":9824,\"journal\":{\"name\":\"Cerâmica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerâmica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0366-69132021673843084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerâmica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0366-69132021673843084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Effect of time of hydrothermal heat treatment on mesoporous nano-TiO2 synthesis
Mesoporous TiO 2 nanoparticles were synthesized by the sol-gel method and using hydrothermal treatment at 200 ºC during different time intervals, which allowed the evaluation of the time or the treatment on the structural, morphological, and optical properties of the oxides. TEM micrographs showed that the morphology of the materials was characterized by the presence of spherical clusters, while the crystalline phases of the anatase and brookite mixtures were analyzed by X-ray diffraction and Raman spectroscopy. A type IV profile was identified from the results of specific surface area, which is characteristic of the mesoporous material with strong and weak affinity. The band gap in the range of 3.29 and 3.40 eV, estimated by the Kubelka-Munk function, showed a gradual increase as a result of oxide crystallization. It was found that 8 h of treatment in a hydrothermal system was sufficient to synthesize a photocatalyst with optimal photocatalytic performance. This efficiency was probably based on a good correlation between physical and chemical factors, such as high surface area and porosity, the improved capability of photon adsorption in the visible range, crystallinity, and a favorable content of brookite.
期刊介绍:
A Revista Cerâmica, órgão oficial da Associação Brasileira de Cerâmica (ABCERAM) publica contribuições originais de interesse na área de cerâmica, compreendendo arte cerâmica, abrasivos, biocerâmicas, cerâmicas avançadas, cerâmica branca, cerâmica de mesa, cerâmica eletroeletrônica, cerâmica estrutural, cerâmica magnética, cerâmica nuclear, cerâmica óptica, cerâmica química, cerâmica termomecânica, cerâmica vermelha, cimento, compósitos de matriz cerâmica, materiais refratários, materiais de revestimento, matérias-primas, vidrados, vidros e vitrocerâmicas, análise microestrutural, ciência básica, instrumentação, processos de fabricação, síntese de pós, técnicas de caracterização etc.