{"title":"pertolyite,三角形GeO2, α-石英的锗类似物:捷克Radvanice新矿物","authors":"Z. V., Š. R., Laufek F., S. J., H. J.","doi":"10.3190/jgeosci.355","DOIUrl":null,"url":null,"abstract":"The new mineral pertoldite was found in a burning waste dump of abandoned Kateřina colliery at Radvanice near Trutnov, Hradec Králové Department, Czech Republic. The dump fire started spontaneously before 1980 and no anthropogenic material was deposited there. The determination of pertoldite as a natural analogue of synthetic trigonal α-GeO 2 is based on its chemical composition, X-ray powder diffraction data, and Raman spectroscopy. Pertoldite occurs as white to brownish aggregates resembling cotton tufts, up to 1 mm in size, composed of acicular crystals up to ~1 μm thick and up to 1 mm in length. Individual crystals are distorted, resembling textile fibers. Pertoldite was formed by direct crystallization from hot (400–500 °C) gasses containing Cl and F as transporting agents at a depth of 40–60 cm under the surface of a burning coal mine dump. It nucleated as a thin, delicate crust on a chip of siltstone together with multi-component aggregates of galena, stibnite, bismuthian antimony, greenockite, and bismuth. The ideal formula of pertoldite, GeO 2 , requires 100 wt. % GeO 2 . Germanium is partially substituted by silica (2.33–5.67 wt. % SiO 2 ), the extent of Ge 1 Si –1 substitution is limited to 0.03–0.09 apfu Si, and the empirical formula ranges between (Ge 0.91-0.97 Si 0.03-0.09 ) Σ1.00 O 2 . Pertoldite is trigonal, P 3 1 21 or P 3 2 21, a = 4.980(5) Å, c = 5.644(4) Å, with V = 121.2(2) Å 3 and Z = 3. The strongest reflections of the powder X-ray diffraction pattern [d (Å)/I ( hkl )] are: 4.315/44(100), 3.425/100(101,011), 2.490/31(110), 2.360/41(012,102), 1.867/31(112), 1.4179/31(023,203), 1.4124/37 (122,212). The crystal structure of pertoldite is based on corner-sharing [GeO 4 ] tetrahedra forming a three-dimensional network similar to that of α-quartz. Pertoldite is named after Zdeněk Pertold (1933–2020), professor of economic geology at the Faculty of Sciences, Charles University in Prague. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2021-074) and the holotype specimen is deposited in the collections in the Department of Mineralogy and Petrology, National Museum in Prague, under the catalogue number P1P 31/2021.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pertoldite, trigonal GeO2, the germanium analog of α-quartz: a new mineral from Radvanice, Czech Republic\",\"authors\":\"Z. V., Š. R., Laufek F., S. J., H. J.\",\"doi\":\"10.3190/jgeosci.355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new mineral pertoldite was found in a burning waste dump of abandoned Kateřina colliery at Radvanice near Trutnov, Hradec Králové Department, Czech Republic. The dump fire started spontaneously before 1980 and no anthropogenic material was deposited there. The determination of pertoldite as a natural analogue of synthetic trigonal α-GeO 2 is based on its chemical composition, X-ray powder diffraction data, and Raman spectroscopy. Pertoldite occurs as white to brownish aggregates resembling cotton tufts, up to 1 mm in size, composed of acicular crystals up to ~1 μm thick and up to 1 mm in length. Individual crystals are distorted, resembling textile fibers. Pertoldite was formed by direct crystallization from hot (400–500 °C) gasses containing Cl and F as transporting agents at a depth of 40–60 cm under the surface of a burning coal mine dump. It nucleated as a thin, delicate crust on a chip of siltstone together with multi-component aggregates of galena, stibnite, bismuthian antimony, greenockite, and bismuth. The ideal formula of pertoldite, GeO 2 , requires 100 wt. % GeO 2 . Germanium is partially substituted by silica (2.33–5.67 wt. % SiO 2 ), the extent of Ge 1 Si –1 substitution is limited to 0.03–0.09 apfu Si, and the empirical formula ranges between (Ge 0.91-0.97 Si 0.03-0.09 ) Σ1.00 O 2 . Pertoldite is trigonal, P 3 1 21 or P 3 2 21, a = 4.980(5) Å, c = 5.644(4) Å, with V = 121.2(2) Å 3 and Z = 3. The strongest reflections of the powder X-ray diffraction pattern [d (Å)/I ( hkl )] are: 4.315/44(100), 3.425/100(101,011), 2.490/31(110), 2.360/41(012,102), 1.867/31(112), 1.4179/31(023,203), 1.4124/37 (122,212). The crystal structure of pertoldite is based on corner-sharing [GeO 4 ] tetrahedra forming a three-dimensional network similar to that of α-quartz. Pertoldite is named after Zdeněk Pertold (1933–2020), professor of economic geology at the Faculty of Sciences, Charles University in Prague. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2021-074) and the holotype specimen is deposited in the collections in the Department of Mineralogy and Petrology, National Museum in Prague, under the catalogue number P1P 31/2021.\",\"PeriodicalId\":15957,\"journal\":{\"name\":\"Journal of Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3190/jgeosci.355\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3190/jgeosci.355","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
摘要
这种新矿物是在捷克共和国赫拉德茨Králové省Trutnov附近的Radvanice废弃煤矿燃烧的废料堆中发现的。垃圾场火灾是1980年以前自发发生的,没有人为的物质沉积在那里。作为合成的三角形α-GeO - 2的天然类似物的橄榄岩的测定是基于其化学成分、x射线粉末衍射数据和拉曼光谱。橄榄石以白色至棕色聚集体的形式出现,类似于棉花簇,大小可达1毫米,由1 μm厚、1毫米长的针状晶体组成。单个晶体被扭曲,类似于纺织纤维。含Cl和F的高温(400-500℃)气体在燃烧的煤矿排土场地表下40-60 cm深度直接结晶形成橄榄岩。它与方铅矿、辉锑矿、铋锑矿、绿钛矿和铋的多组分聚集体一起在粉砂岩片上形成一层薄而精致的外壳。理想的橄榄岩配方,geo2,需要100wt . %的geo2。锗部分被二氧化硅取代(2.33-5.67 wt. % sio2), Ge 1 Si -1取代的程度限制在0.03-0.09 apfu Si,经验公式范围为(Ge 0.91-0.97 Si 0.03-0.09) Σ1.00 o2。橄榄岩呈三角形,p3121或p3221, a = 4.980(5) Å, c = 5.644(4) Å, V = 121.2(2) Å 3, Z = 3。粉末x射线衍射图的最强反射[d (Å)/I (hkl)]分别为:4.315/44(100)、3.425/100(101,011)、2.490/31(110)、2.360/41(012,102)、1.867/31(112)、1.4179/31(023,203)、1.4124/37(122,212)。橄榄石的晶体结构以棱角共享的[geo4]四面体为基础,形成类似α-石英的三维网状结构。Pertoldite以布拉格查尔斯大学理学院经济地质学教授zdenk Pertold(1933-2020)的名字命名。该矿物及其名称已得到国际矿物学协会新矿物、命名法和分类委员会(编号2021-074)的批准,全型标本存放在布拉格国家博物馆矿物学和岩石学部的收藏中,目录编号为P1P 31/2021。
Pertoldite, trigonal GeO2, the germanium analog of α-quartz: a new mineral from Radvanice, Czech Republic
The new mineral pertoldite was found in a burning waste dump of abandoned Kateřina colliery at Radvanice near Trutnov, Hradec Králové Department, Czech Republic. The dump fire started spontaneously before 1980 and no anthropogenic material was deposited there. The determination of pertoldite as a natural analogue of synthetic trigonal α-GeO 2 is based on its chemical composition, X-ray powder diffraction data, and Raman spectroscopy. Pertoldite occurs as white to brownish aggregates resembling cotton tufts, up to 1 mm in size, composed of acicular crystals up to ~1 μm thick and up to 1 mm in length. Individual crystals are distorted, resembling textile fibers. Pertoldite was formed by direct crystallization from hot (400–500 °C) gasses containing Cl and F as transporting agents at a depth of 40–60 cm under the surface of a burning coal mine dump. It nucleated as a thin, delicate crust on a chip of siltstone together with multi-component aggregates of galena, stibnite, bismuthian antimony, greenockite, and bismuth. The ideal formula of pertoldite, GeO 2 , requires 100 wt. % GeO 2 . Germanium is partially substituted by silica (2.33–5.67 wt. % SiO 2 ), the extent of Ge 1 Si –1 substitution is limited to 0.03–0.09 apfu Si, and the empirical formula ranges between (Ge 0.91-0.97 Si 0.03-0.09 ) Σ1.00 O 2 . Pertoldite is trigonal, P 3 1 21 or P 3 2 21, a = 4.980(5) Å, c = 5.644(4) Å, with V = 121.2(2) Å 3 and Z = 3. The strongest reflections of the powder X-ray diffraction pattern [d (Å)/I ( hkl )] are: 4.315/44(100), 3.425/100(101,011), 2.490/31(110), 2.360/41(012,102), 1.867/31(112), 1.4179/31(023,203), 1.4124/37 (122,212). The crystal structure of pertoldite is based on corner-sharing [GeO 4 ] tetrahedra forming a three-dimensional network similar to that of α-quartz. Pertoldite is named after Zdeněk Pertold (1933–2020), professor of economic geology at the Faculty of Sciences, Charles University in Prague. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2021-074) and the holotype specimen is deposited in the collections in the Department of Mineralogy and Petrology, National Museum in Prague, under the catalogue number P1P 31/2021.
期刊介绍:
The Journal of Geosciences is an international peer-reviewed journal published by the Czech Geological Society with support from the Czech Geological Survey. It accepts high-quality original research or review papers dealing with all aspects of the nature and origin of igneous and metamorphic rocks. The Journal focuses, mainly but not exclusively, on:
-Process-oriented regional studies of igneous and metamorphic complexes-
Research in structural geology and tectonics-
Igneous and metamorphic petrology-
Mineral chemistry and mineralogy-
Major- and trace-element geochemistry, isotope geochemistry-
Dating igneous activity and metamorphic events-
Experimental petrology and mineralogy-
Theoretical models of igneous and metamorphic processes-
Mineralizing processes and mineral deposits.
All the papers are written in English, even though they may be accompanied by an additional Czech abstract. Each contribution is a subject to peer review by at least two independent reviewers, typically at least one from abroad. The Journal appears 2 to 4 times a year. Formally it is divided in annual volumes, each of them including 4 issues.