基于k均值和线性回归的医院理赔异常检测

Hendri Kurniawan Prakosa, N. Rokhman
{"title":"基于k均值和线性回归的医院理赔异常检测","authors":"Hendri Kurniawan Prakosa, N. Rokhman","doi":"10.22146/IJCCS.68160","DOIUrl":null,"url":null,"abstract":" BPJS Kesehatan, which has been in existence for almost a decade, is still experiencing a deficit in the process of guaranteeing participants. One of the factors that causes this is a discrepancy in the claim process which tends to harm BPJS Kesehatan. For example, by increasing the diagnostic coding so that the claim becomes bigger, making double claims or even recording false claims. These actions are based on government regulations is including fraud. Fraud can be detected by looking at the anomalies that appear in the claim data.This research aims to determine the anomaly of hospital claim to BPJS Kesehatan. The data used is BPJS claim data for 2015-2016. While the algorithm used is a combination of K-Means algorithm and Linear Regression. For optimal clustering results, density canopy algorithm was used to determine the initial centroid.Evaluation using silhouete index resulted in value of 0.82 with number of clusters 5 and RMSE value from simple linear regression modeling of 0.49 for billing costs and 0.97 for  length of stay. Based on that, there are 435 anomaly points out of 10,000 data or 4.35%. It is hoped that with the identification of these, more effective follow-up can be carried out.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Detection in Hospital Claims Using K-Means and Linear Regression\",\"authors\":\"Hendri Kurniawan Prakosa, N. Rokhman\",\"doi\":\"10.22146/IJCCS.68160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" BPJS Kesehatan, which has been in existence for almost a decade, is still experiencing a deficit in the process of guaranteeing participants. One of the factors that causes this is a discrepancy in the claim process which tends to harm BPJS Kesehatan. For example, by increasing the diagnostic coding so that the claim becomes bigger, making double claims or even recording false claims. These actions are based on government regulations is including fraud. Fraud can be detected by looking at the anomalies that appear in the claim data.This research aims to determine the anomaly of hospital claim to BPJS Kesehatan. The data used is BPJS claim data for 2015-2016. While the algorithm used is a combination of K-Means algorithm and Linear Regression. For optimal clustering results, density canopy algorithm was used to determine the initial centroid.Evaluation using silhouete index resulted in value of 0.82 with number of clusters 5 and RMSE value from simple linear regression modeling of 0.49 for billing costs and 0.97 for  length of stay. Based on that, there are 435 anomaly points out of 10,000 data or 4.35%. It is hoped that with the identification of these, more effective follow-up can be carried out.\",\"PeriodicalId\":31625,\"journal\":{\"name\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/IJCCS.68160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJCCS.68160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

成立近十年的BPJS Kesehatan在保障参与者的过程中仍然存在赤字。造成这种情况的因素之一是索赔过程中的差异,这往往会损害BPJS Kesehatan。例如,通过增加诊断编码使权利要求变大,制造双重权利要求甚至记录虚假权利要求。这些行为是基于政府法规的,包括欺诈。可以通过查看索赔数据中出现的异常情况来检测欺诈。本研究旨在确定BPJS Kesehatan的医院理赔异常。使用的数据是BPJS 2015-2016年的索赔数据。而使用的算法是k均值算法和线性回归的结合。为了获得最优聚类结果,采用密度冠层算法确定初始质心。剪影指数的评价结果为0.82,聚类数为5,简单线性回归模型的RMSE值为计费成本0.49,停留时间0.97。以此为基础,1万个数据中有435个异常点(4.35%)。希望随着这些问题的确定,可以进行更有效的后续工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomaly Detection in Hospital Claims Using K-Means and Linear Regression
 BPJS Kesehatan, which has been in existence for almost a decade, is still experiencing a deficit in the process of guaranteeing participants. One of the factors that causes this is a discrepancy in the claim process which tends to harm BPJS Kesehatan. For example, by increasing the diagnostic coding so that the claim becomes bigger, making double claims or even recording false claims. These actions are based on government regulations is including fraud. Fraud can be detected by looking at the anomalies that appear in the claim data.This research aims to determine the anomaly of hospital claim to BPJS Kesehatan. The data used is BPJS claim data for 2015-2016. While the algorithm used is a combination of K-Means algorithm and Linear Regression. For optimal clustering results, density canopy algorithm was used to determine the initial centroid.Evaluation using silhouete index resulted in value of 0.82 with number of clusters 5 and RMSE value from simple linear regression modeling of 0.49 for billing costs and 0.97 for  length of stay. Based on that, there are 435 anomaly points out of 10,000 data or 4.35%. It is hoped that with the identification of these, more effective follow-up can be carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1