Rachel A Patterson, Heather Brooks, Mina Mirjalili, Neda Rashidi-Ranjbar, Reza Zomorrodi, Daniel M Blumberger, Corinne E Fischer, Alastair J Flint, Ariel Graff-Guerrero, Nathan Herrmann, James L Kennedy, Sanjeev Kumar, Krista L Lanctôt, Linda Mah, Benoit H Mulsant, Bruce G Pollock, Aristotle N Voineskos, Wei Wang, Tarek K Rajji
{"title":"老年痴呆风险人群工作记忆的神经生理学和其他特征","authors":"Rachel A Patterson, Heather Brooks, Mina Mirjalili, Neda Rashidi-Ranjbar, Reza Zomorrodi, Daniel M Blumberger, Corinne E Fischer, Alastair J Flint, Ariel Graff-Guerrero, Nathan Herrmann, James L Kennedy, Sanjeev Kumar, Krista L Lanctôt, Linda Mah, Benoit H Mulsant, Bruce G Pollock, Aristotle N Voineskos, Wei Wang, Tarek K Rajji","doi":"10.1007/s11571-023-09938-y","DOIUrl":null,"url":null,"abstract":"<p><p>Theta-gamma coupling (TGC) is a neurophysiological process that supports working memory. Working memory is associated with other clinical and biological features. The extent to which TGC is associated with these other features and whether it contributes to working memory beyond these features is unknown. Two-hundred-and-three older participants at risk for Alzheimer's dementia-98 with mild cognitive impairment (MCI), 39 with major depressive disorder (MDD) in remission, and 66 with MCI and MDD (MCI + MDD)-completed a clinical assessment, N-back-EEG, and brain MRI. Among them, 190 completed genetic testing, and 121 completed [<sup>11</sup>C] Pittsburgh Compound B ([11C] PIB) PET imaging. Hierarchical linear regressions were used to assess whether TGC is associated with demographic and clinical variables; Alzheimer's disease-related features (<i>APOE</i> ε4 carrier status and β-amyloid load); and structural features related to working memory. Then, linear regressions were used to assess whether TGC is associated with 2-back performance after accounting for these features. Other than age, TGC was not associated with any non-neurophysiological features. In contrast, TGC (β = 0.27; <i>p</i> = 0.006), age (β = - 0.29; <i>p</i> = 0.012), and parietal cortical thickness (β = 0.24; <i>p</i> = 0.020) were associated with 2-back performance. We also examined two other EEG features that are linked to working memory-theta event-related synchronization and alpha event-related desynchronization-and found them not to be associated with any feature or performance after accounting for TGC. Our findings suggest that TGC is a process that is independent of other clinical, genetic, neurochemical, and structural variables, and supports working memory in older adults at risk for dementia.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-023-09938-y.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143125/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neurophysiological and other features of working memory in older adults at risk for dementia.\",\"authors\":\"Rachel A Patterson, Heather Brooks, Mina Mirjalili, Neda Rashidi-Ranjbar, Reza Zomorrodi, Daniel M Blumberger, Corinne E Fischer, Alastair J Flint, Ariel Graff-Guerrero, Nathan Herrmann, James L Kennedy, Sanjeev Kumar, Krista L Lanctôt, Linda Mah, Benoit H Mulsant, Bruce G Pollock, Aristotle N Voineskos, Wei Wang, Tarek K Rajji\",\"doi\":\"10.1007/s11571-023-09938-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Theta-gamma coupling (TGC) is a neurophysiological process that supports working memory. Working memory is associated with other clinical and biological features. The extent to which TGC is associated with these other features and whether it contributes to working memory beyond these features is unknown. Two-hundred-and-three older participants at risk for Alzheimer's dementia-98 with mild cognitive impairment (MCI), 39 with major depressive disorder (MDD) in remission, and 66 with MCI and MDD (MCI + MDD)-completed a clinical assessment, N-back-EEG, and brain MRI. Among them, 190 completed genetic testing, and 121 completed [<sup>11</sup>C] Pittsburgh Compound B ([11C] PIB) PET imaging. Hierarchical linear regressions were used to assess whether TGC is associated with demographic and clinical variables; Alzheimer's disease-related features (<i>APOE</i> ε4 carrier status and β-amyloid load); and structural features related to working memory. Then, linear regressions were used to assess whether TGC is associated with 2-back performance after accounting for these features. Other than age, TGC was not associated with any non-neurophysiological features. In contrast, TGC (β = 0.27; <i>p</i> = 0.006), age (β = - 0.29; <i>p</i> = 0.012), and parietal cortical thickness (β = 0.24; <i>p</i> = 0.020) were associated with 2-back performance. We also examined two other EEG features that are linked to working memory-theta event-related synchronization and alpha event-related desynchronization-and found them not to be associated with any feature or performance after accounting for TGC. Our findings suggest that TGC is a process that is independent of other clinical, genetic, neurochemical, and structural variables, and supports working memory in older adults at risk for dementia.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-023-09938-y.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143125/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09938-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09938-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Neurophysiological and other features of working memory in older adults at risk for dementia.
Theta-gamma coupling (TGC) is a neurophysiological process that supports working memory. Working memory is associated with other clinical and biological features. The extent to which TGC is associated with these other features and whether it contributes to working memory beyond these features is unknown. Two-hundred-and-three older participants at risk for Alzheimer's dementia-98 with mild cognitive impairment (MCI), 39 with major depressive disorder (MDD) in remission, and 66 with MCI and MDD (MCI + MDD)-completed a clinical assessment, N-back-EEG, and brain MRI. Among them, 190 completed genetic testing, and 121 completed [11C] Pittsburgh Compound B ([11C] PIB) PET imaging. Hierarchical linear regressions were used to assess whether TGC is associated with demographic and clinical variables; Alzheimer's disease-related features (APOE ε4 carrier status and β-amyloid load); and structural features related to working memory. Then, linear regressions were used to assess whether TGC is associated with 2-back performance after accounting for these features. Other than age, TGC was not associated with any non-neurophysiological features. In contrast, TGC (β = 0.27; p = 0.006), age (β = - 0.29; p = 0.012), and parietal cortical thickness (β = 0.24; p = 0.020) were associated with 2-back performance. We also examined two other EEG features that are linked to working memory-theta event-related synchronization and alpha event-related desynchronization-and found them not to be associated with any feature or performance after accounting for TGC. Our findings suggest that TGC is a process that is independent of other clinical, genetic, neurochemical, and structural variables, and supports working memory in older adults at risk for dementia.
Supplementary information: The online version contains supplementary material available at 10.1007/s11571-023-09938-y.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.