{"title":"具有最小约束违反的优化","authors":"Yuhong Dai, Liwei Zhang","doi":"10.4208/csiam-am.2020-0043","DOIUrl":null,"url":null,"abstract":"Study about theory and algorithms for constrained optimization usually assumes that the feasible region of the optimization problem is nonempty. However, there are many important practical optimization problems whose feasible regions are not known to be nonempty or not, and optimizers of the objective function with the least constraint violation prefer to be found. A natural way for dealing with these problems is to extend the constrained optimization problem as the one optimizing the objective function over the set of points with the least constraint violation. Firstly, the minimization problem with least constraint violation is proved to be an Lipschitz equality constrained optimization problem when the original problem is a convex optimization problem with possible inconsistent conic constraints, and it can be reformulated as an MPEC problem. Secondly, for nonlinear programming problems with possible inconsistent constraints, various types of stationary points are presented for the MPCC problem which is equivalent to the minimization problem with least constraint violation, and an elegant necessary optimality condition, named as L-stationary condition, is established from the classical optimality theory of Lipschitz continuous optimization. Finally, the smoothing Fischer-Burmeister function method for nonlinear programming case is constructed for solving the problem minimizing the objective function with the least constraint violation. It is demonstrated that, when the positive smoothing parameter approaches to zero, any point in the outer limit of the KKT-point mapping is an L-stationary point of the equivalent MPCC problem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization with Least Constraint Violation\",\"authors\":\"Yuhong Dai, Liwei Zhang\",\"doi\":\"10.4208/csiam-am.2020-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Study about theory and algorithms for constrained optimization usually assumes that the feasible region of the optimization problem is nonempty. However, there are many important practical optimization problems whose feasible regions are not known to be nonempty or not, and optimizers of the objective function with the least constraint violation prefer to be found. A natural way for dealing with these problems is to extend the constrained optimization problem as the one optimizing the objective function over the set of points with the least constraint violation. Firstly, the minimization problem with least constraint violation is proved to be an Lipschitz equality constrained optimization problem when the original problem is a convex optimization problem with possible inconsistent conic constraints, and it can be reformulated as an MPEC problem. Secondly, for nonlinear programming problems with possible inconsistent constraints, various types of stationary points are presented for the MPCC problem which is equivalent to the minimization problem with least constraint violation, and an elegant necessary optimality condition, named as L-stationary condition, is established from the classical optimality theory of Lipschitz continuous optimization. Finally, the smoothing Fischer-Burmeister function method for nonlinear programming case is constructed for solving the problem minimizing the objective function with the least constraint violation. It is demonstrated that, when the positive smoothing parameter approaches to zero, any point in the outer limit of the KKT-point mapping is an L-stationary point of the equivalent MPCC problem.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/csiam-am.2020-0043\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.2020-0043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Study about theory and algorithms for constrained optimization usually assumes that the feasible region of the optimization problem is nonempty. However, there are many important practical optimization problems whose feasible regions are not known to be nonempty or not, and optimizers of the objective function with the least constraint violation prefer to be found. A natural way for dealing with these problems is to extend the constrained optimization problem as the one optimizing the objective function over the set of points with the least constraint violation. Firstly, the minimization problem with least constraint violation is proved to be an Lipschitz equality constrained optimization problem when the original problem is a convex optimization problem with possible inconsistent conic constraints, and it can be reformulated as an MPEC problem. Secondly, for nonlinear programming problems with possible inconsistent constraints, various types of stationary points are presented for the MPCC problem which is equivalent to the minimization problem with least constraint violation, and an elegant necessary optimality condition, named as L-stationary condition, is established from the classical optimality theory of Lipschitz continuous optimization. Finally, the smoothing Fischer-Burmeister function method for nonlinear programming case is constructed for solving the problem minimizing the objective function with the least constraint violation. It is demonstrated that, when the positive smoothing parameter approaches to zero, any point in the outer limit of the KKT-point mapping is an L-stationary point of the equivalent MPCC problem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.