Naveen Thakur, Anu, K. Kumar, V. Thakur, S. Soni, Ashwani Kumar, S. Samant
{"title":"微波辅助法研究未掺杂和(Ag, Fe)共掺杂CuO纳米颗粒的抗菌和光催化活性","authors":"Naveen Thakur, Anu, K. Kumar, V. Thakur, S. Soni, Ashwani Kumar, S. Samant","doi":"10.37819/nanofab.007.186","DOIUrl":null,"url":null,"abstract":"Nanoparticles (NPs) are miniature materials ranging from 1 to 100 nm. The NPs have unique chemical and physical properties due to their shape, size and high surface area. This research paper gives a detailed summary of the synthesis, characterization and applications of undoped and (Ag, Fe) co-doped CuO NPs with a diverse concentration of Fe (0.02, 0.04, 0.06 and 0.08 M) at a constant concentration of Ag (0.02 M). X-ray diffractometer (XRD) results revealed average crystallite size of NPs varies in the range 13.10-24.98 nm. Scanning electron microscopy (FE-SEM) showed that the morphology of pure synthesized CuO NPs and Energy dispersive x-ray spectroscopy (EDX) recognized the presence of Ag, Fe elements in the CuO lattice. The particle size obtained by transmission electron microscope (HR-TEM) images was found in the range 19.73-21.47 nm. Cu-O bond stretching of NPs was also confirmed by Fourier Transform Infrared (FTIR) techniques. The values of direct and indirect band gap for CuO were found to be 1.41-1.54 eV and 0.69-1.51 eV respectively. Antibacterial activity for synthesized NPs tested against gram-negative and gram-positive pathogenic bacteria. The photocatalytic properties of synthesized NPs were investigated by monitoring the methyl orange/methylene blue degradation in ultraviolet visible spectroscopy (UV-Vis).","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Antibacterial and photocatalytic activity of undoped and (Ag, Fe) co-doped CuO nanoparticles via microwave-assisted method\",\"authors\":\"Naveen Thakur, Anu, K. Kumar, V. Thakur, S. Soni, Ashwani Kumar, S. Samant\",\"doi\":\"10.37819/nanofab.007.186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles (NPs) are miniature materials ranging from 1 to 100 nm. The NPs have unique chemical and physical properties due to their shape, size and high surface area. This research paper gives a detailed summary of the synthesis, characterization and applications of undoped and (Ag, Fe) co-doped CuO NPs with a diverse concentration of Fe (0.02, 0.04, 0.06 and 0.08 M) at a constant concentration of Ag (0.02 M). X-ray diffractometer (XRD) results revealed average crystallite size of NPs varies in the range 13.10-24.98 nm. Scanning electron microscopy (FE-SEM) showed that the morphology of pure synthesized CuO NPs and Energy dispersive x-ray spectroscopy (EDX) recognized the presence of Ag, Fe elements in the CuO lattice. The particle size obtained by transmission electron microscope (HR-TEM) images was found in the range 19.73-21.47 nm. Cu-O bond stretching of NPs was also confirmed by Fourier Transform Infrared (FTIR) techniques. The values of direct and indirect band gap for CuO were found to be 1.41-1.54 eV and 0.69-1.51 eV respectively. Antibacterial activity for synthesized NPs tested against gram-negative and gram-positive pathogenic bacteria. The photocatalytic properties of synthesized NPs were investigated by monitoring the methyl orange/methylene blue degradation in ultraviolet visible spectroscopy (UV-Vis).\",\"PeriodicalId\":51992,\"journal\":{\"name\":\"Nanofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanofabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37819/nanofab.007.186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanofabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37819/nanofab.007.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Antibacterial and photocatalytic activity of undoped and (Ag, Fe) co-doped CuO nanoparticles via microwave-assisted method
Nanoparticles (NPs) are miniature materials ranging from 1 to 100 nm. The NPs have unique chemical and physical properties due to their shape, size and high surface area. This research paper gives a detailed summary of the synthesis, characterization and applications of undoped and (Ag, Fe) co-doped CuO NPs with a diverse concentration of Fe (0.02, 0.04, 0.06 and 0.08 M) at a constant concentration of Ag (0.02 M). X-ray diffractometer (XRD) results revealed average crystallite size of NPs varies in the range 13.10-24.98 nm. Scanning electron microscopy (FE-SEM) showed that the morphology of pure synthesized CuO NPs and Energy dispersive x-ray spectroscopy (EDX) recognized the presence of Ag, Fe elements in the CuO lattice. The particle size obtained by transmission electron microscope (HR-TEM) images was found in the range 19.73-21.47 nm. Cu-O bond stretching of NPs was also confirmed by Fourier Transform Infrared (FTIR) techniques. The values of direct and indirect band gap for CuO were found to be 1.41-1.54 eV and 0.69-1.51 eV respectively. Antibacterial activity for synthesized NPs tested against gram-negative and gram-positive pathogenic bacteria. The photocatalytic properties of synthesized NPs were investigated by monitoring the methyl orange/methylene blue degradation in ultraviolet visible spectroscopy (UV-Vis).