基于多级局部二值模式纹理描述符的数字图像篡改检测

IF 1.1 Q3 CRIMINOLOGY & PENOLOGY Journal of Applied Security Research Pub Date : 2021-04-09 DOI:10.1080/19361610.2021.1883397
Vikas Srivastava, S. Yadav
{"title":"基于多级局部二值模式纹理描述符的数字图像篡改检测","authors":"Vikas Srivastava, S. Yadav","doi":"10.1080/19361610.2021.1883397","DOIUrl":null,"url":null,"abstract":"Abstract Digital images can be manipulated using the latest tools and techniques without leaving any visible traces. Image tampering detection is required to authenticate image validation. It is concluded from previous research that image tampering modifies the texture micropattern in a digital image. Therefore, texture descriptors can be applied to highlight these changes. A texture descriptor–based technique is proposed for detecting both copy-move and splicing forgery. In the proposed method, an RGB image is converted into a YCbCr image and Cb and Cr image components are extracted, as these components are more sensitive to tampering artifacts. Further, a standard deviation (STD) filter and higher-order texture descriptors are applied on Cb and Cr components. The STD filter is used to highlight important details of objects in the image. A support vector machine classifier is used to classify forged and tampered images. Support vector machine (SVM) classifier gives good results on both large- and small-image data sets. The performance is appraised in three online-available, widely used data sets: CASIA v1.0, CASIA v2.0, and Columbia. The proposed method outperforms most of the state-of-the-art methods.","PeriodicalId":44585,"journal":{"name":"Journal of Applied Security Research","volume":"17 1","pages":"62 - 79"},"PeriodicalIF":1.1000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19361610.2021.1883397","citationCount":"2","resultStr":"{\"title\":\"Digital Image Tampering Detection Using Multilevel Local Binary Pattern Texture Descriptor\",\"authors\":\"Vikas Srivastava, S. Yadav\",\"doi\":\"10.1080/19361610.2021.1883397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Digital images can be manipulated using the latest tools and techniques without leaving any visible traces. Image tampering detection is required to authenticate image validation. It is concluded from previous research that image tampering modifies the texture micropattern in a digital image. Therefore, texture descriptors can be applied to highlight these changes. A texture descriptor–based technique is proposed for detecting both copy-move and splicing forgery. In the proposed method, an RGB image is converted into a YCbCr image and Cb and Cr image components are extracted, as these components are more sensitive to tampering artifacts. Further, a standard deviation (STD) filter and higher-order texture descriptors are applied on Cb and Cr components. The STD filter is used to highlight important details of objects in the image. A support vector machine classifier is used to classify forged and tampered images. Support vector machine (SVM) classifier gives good results on both large- and small-image data sets. The performance is appraised in three online-available, widely used data sets: CASIA v1.0, CASIA v2.0, and Columbia. The proposed method outperforms most of the state-of-the-art methods.\",\"PeriodicalId\":44585,\"journal\":{\"name\":\"Journal of Applied Security Research\",\"volume\":\"17 1\",\"pages\":\"62 - 79\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19361610.2021.1883397\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Security Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19361610.2021.1883397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRIMINOLOGY & PENOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Security Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19361610.2021.1883397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRIMINOLOGY & PENOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

数字图像可以使用最新的工具和技术进行处理,而不会留下任何可见的痕迹。需要图像篡改检测来验证图像验证。以往的研究表明,图像篡改会改变数字图像中的纹理微图案。因此,纹理描述符可以用来突出这些变化。提出了一种基于纹理描述符的复制-移动和拼接伪造检测方法。该方法将RGB图像转换为YCbCr图像,提取Cb和Cr图像分量,因为这些分量对篡改伪影更敏感。此外,在Cb和Cr分量上应用了标准偏差(STD)滤波器和高阶纹理描述符。STD过滤器用于突出显示图像中物体的重要细节。采用支持向量机分类器对伪造和篡改图像进行分类。支持向量机分类器在大图像和小图像数据集上都有很好的分类效果。性能在三个在线可用的、广泛使用的数据集中进行评估:CASIA v1.0、CASIA v2.0和Columbia。所提出的方法优于大多数最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital Image Tampering Detection Using Multilevel Local Binary Pattern Texture Descriptor
Abstract Digital images can be manipulated using the latest tools and techniques without leaving any visible traces. Image tampering detection is required to authenticate image validation. It is concluded from previous research that image tampering modifies the texture micropattern in a digital image. Therefore, texture descriptors can be applied to highlight these changes. A texture descriptor–based technique is proposed for detecting both copy-move and splicing forgery. In the proposed method, an RGB image is converted into a YCbCr image and Cb and Cr image components are extracted, as these components are more sensitive to tampering artifacts. Further, a standard deviation (STD) filter and higher-order texture descriptors are applied on Cb and Cr components. The STD filter is used to highlight important details of objects in the image. A support vector machine classifier is used to classify forged and tampered images. Support vector machine (SVM) classifier gives good results on both large- and small-image data sets. The performance is appraised in three online-available, widely used data sets: CASIA v1.0, CASIA v2.0, and Columbia. The proposed method outperforms most of the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Security Research
Journal of Applied Security Research CRIMINOLOGY & PENOLOGY-
CiteScore
2.90
自引率
15.40%
发文量
35
期刊最新文献
Campus Security and Crime Prevention: A View from a Police Chief with a Ph.D. in Criminology Privacy, Data Protection and Cyber Crimes: Mapping Perceptions of Pakistani Users Theoretical and Experimental Framework for Estimating Cyber Victimization Risk in a Hybrid Physical-Virtual World Cybersecurity Risk Management Scenarios for Teaching Information Security Management The Rise of #Cartels: Exploring the Organizational Operations and Messaging of Public Perception on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1