{"title":"用score copula模型模拟波动性相关性","authors":"Willy Alanya-Beltran","doi":"10.1515/snde-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract I study score-driven models for modelling high persistence dependence between financial volatility series. I model this persistence dependence with two components, one for the long memory and the other for the short-term process. The addition of components offers a parsimonious solution for modelling high persistence and also allows for a short-term component for the transient shocks. I apply the model to emerging equities in the Americas. The estimates are robust to the advent of the pandemic. In addition, data resampling and marginal alternatives deliver similar parameter estimates. The proposed two-component model improves the in-sample diagnostics and generates more accurate out-of-sample forecasts.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling volatility dependence with score copula models\",\"authors\":\"Willy Alanya-Beltran\",\"doi\":\"10.1515/snde-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract I study score-driven models for modelling high persistence dependence between financial volatility series. I model this persistence dependence with two components, one for the long memory and the other for the short-term process. The addition of components offers a parsimonious solution for modelling high persistence and also allows for a short-term component for the transient shocks. I apply the model to emerging equities in the Americas. The estimates are robust to the advent of the pandemic. In addition, data resampling and marginal alternatives deliver similar parameter estimates. The proposed two-component model improves the in-sample diagnostics and generates more accurate out-of-sample forecasts.\",\"PeriodicalId\":46709,\"journal\":{\"name\":\"Studies in Nonlinear Dynamics and Econometrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Nonlinear Dynamics and Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1515/snde-2022-0006\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2022-0006","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Modelling volatility dependence with score copula models
Abstract I study score-driven models for modelling high persistence dependence between financial volatility series. I model this persistence dependence with two components, one for the long memory and the other for the short-term process. The addition of components offers a parsimonious solution for modelling high persistence and also allows for a short-term component for the transient shocks. I apply the model to emerging equities in the Americas. The estimates are robust to the advent of the pandemic. In addition, data resampling and marginal alternatives deliver similar parameter estimates. The proposed two-component model improves the in-sample diagnostics and generates more accurate out-of-sample forecasts.
期刊介绍:
Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.