西班牙东南部火灾后土壤演变的评价:多代理方法

IF 2 Q3 SOIL SCIENCE Spanish Journal of Soil Science Pub Date : 2021-10-14 DOI:10.3389/sjss.2021.10010
Daniel Martín Lorenzo, F. J. Rodriguez Tovar, F. M. Martín Peinado
{"title":"西班牙东南部火灾后土壤演变的评价:多代理方法","authors":"Daniel Martín Lorenzo, F. J. Rodriguez Tovar, F. M. Martín Peinado","doi":"10.3389/sjss.2021.10010","DOIUrl":null,"url":null,"abstract":"Fire is considered as part of the ecological dynamic in Mediterranean forests and is strongly related to an anthropogenic origin. The aim of this study is to evaluate the evolution of soil properties after a fire in the short term (20 months) by the use of soil quality indicators. The work is based on a multiproxy approach about three basic aspects: 1) the study of changes in soil properties; 2) the estimation of erosion rates; and 3) the evaluation of colonization evolution by soil arthropods through ichnological analysis. Three sectors were selected for this study: a burned and intervened area, a burned and not intervened area, and a reference area. Soil samples were taken randomly from each plot and their main physico-chemical properties analyzed. The assessment of soil erosion was estimated for each plot from three transects (20 m in length) perpendicular to the maximum slope, and the same transects were used for the ichnological study to identify the different bioturbations and the producers. An increase in pH and K values and C/N ratio, and a decrease in total N, available P, CEC, and respiration rate were observed among the fire-affected areas and the reference area; however, there were no significant differences in soil organic carbon. According to erosion, the hydrological correction measures based on the construction of barriers with trunks and branches favored higher runoff and erosion rates in the intervened areas with respect to the not intervened areas. The ichnological analysis showed that arthropods of Formicidae family and Lycosidae sp. genre were the main organisms that recolonized post-fire scenarios; moreover, a lower ichnodiversity is observed in the not intervened area, although with a greater abundance, with respect to the intervened and reference area. According to our results, 20 months after the fire most soil physical-chemical properties did not experiment significant differences in relation to unburned reference area. Our erosion estimation suggested the hydrological correction measures were not appropriate to reduce erosion rates and led to higher soil losses. Moreover, our ichnological study supports the domination by pioneer and opportunist organisms in the recolonization of burned areas.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Soil Evolution After a Fire in the Southeast of Spain: A Multiproxy Approach\",\"authors\":\"Daniel Martín Lorenzo, F. J. Rodriguez Tovar, F. M. Martín Peinado\",\"doi\":\"10.3389/sjss.2021.10010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fire is considered as part of the ecological dynamic in Mediterranean forests and is strongly related to an anthropogenic origin. The aim of this study is to evaluate the evolution of soil properties after a fire in the short term (20 months) by the use of soil quality indicators. The work is based on a multiproxy approach about three basic aspects: 1) the study of changes in soil properties; 2) the estimation of erosion rates; and 3) the evaluation of colonization evolution by soil arthropods through ichnological analysis. Three sectors were selected for this study: a burned and intervened area, a burned and not intervened area, and a reference area. Soil samples were taken randomly from each plot and their main physico-chemical properties analyzed. The assessment of soil erosion was estimated for each plot from three transects (20 m in length) perpendicular to the maximum slope, and the same transects were used for the ichnological study to identify the different bioturbations and the producers. An increase in pH and K values and C/N ratio, and a decrease in total N, available P, CEC, and respiration rate were observed among the fire-affected areas and the reference area; however, there were no significant differences in soil organic carbon. According to erosion, the hydrological correction measures based on the construction of barriers with trunks and branches favored higher runoff and erosion rates in the intervened areas with respect to the not intervened areas. The ichnological analysis showed that arthropods of Formicidae family and Lycosidae sp. genre were the main organisms that recolonized post-fire scenarios; moreover, a lower ichnodiversity is observed in the not intervened area, although with a greater abundance, with respect to the intervened and reference area. According to our results, 20 months after the fire most soil physical-chemical properties did not experiment significant differences in relation to unburned reference area. Our erosion estimation suggested the hydrological correction measures were not appropriate to reduce erosion rates and led to higher soil losses. Moreover, our ichnological study supports the domination by pioneer and opportunist organisms in the recolonization of burned areas.\",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/sjss.2021.10010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2021.10010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 2

摘要

火灾被认为是地中海森林生态动态的一部分,与人为起源密切相关。本研究的目的是利用土壤质量指标评价火灾后短期(20个月)土壤性质的演变。这项工作基于多代理方法,涉及三个基本方面:1)土壤性质变化的研究;2)侵蚀速率估算;3)通过技术分析评价土壤节肢动物的定植进化。本研究选择了三个区域:烧伤和干预区,烧伤和未干预区,以及参考区。随机抽取各样地土壤样品,分析其主要理化性质。通过垂直于最大坡度的3个样带(长度为20 m)估算每个样地的土壤侵蚀评估,并使用相同的样带进行技术研究,以确定不同的生物扰动和产生因素。土壤pH、K值和碳氮比均呈上升趋势,全氮、有效磷、CEC和呼吸速率均呈下降趋势;土壤有机碳含量差异不显著。从侵蚀的角度来看,以树干和树枝筑坝为基础的水文修正措施有利于干预区相对于未干预区更高的径流和侵蚀速率。技术分析表明,火灾后再定植的主要生物为蚁科节肢动物和石松科节肢动物;此外,与干预区和参考区相比,未干预区的生物多样性较低,但丰度较高。根据我们的研究结果,火灾后20个月大部分土壤的理化性质与未燃烧参照区相比没有显著差异。我们的侵蚀估算表明,水文校正措施不适合降低侵蚀速率,导致土壤流失增加。此外,我们的技术研究支持先锋和机会主义生物在烧伤地区的再殖民中占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Soil Evolution After a Fire in the Southeast of Spain: A Multiproxy Approach
Fire is considered as part of the ecological dynamic in Mediterranean forests and is strongly related to an anthropogenic origin. The aim of this study is to evaluate the evolution of soil properties after a fire in the short term (20 months) by the use of soil quality indicators. The work is based on a multiproxy approach about three basic aspects: 1) the study of changes in soil properties; 2) the estimation of erosion rates; and 3) the evaluation of colonization evolution by soil arthropods through ichnological analysis. Three sectors were selected for this study: a burned and intervened area, a burned and not intervened area, and a reference area. Soil samples were taken randomly from each plot and their main physico-chemical properties analyzed. The assessment of soil erosion was estimated for each plot from three transects (20 m in length) perpendicular to the maximum slope, and the same transects were used for the ichnological study to identify the different bioturbations and the producers. An increase in pH and K values and C/N ratio, and a decrease in total N, available P, CEC, and respiration rate were observed among the fire-affected areas and the reference area; however, there were no significant differences in soil organic carbon. According to erosion, the hydrological correction measures based on the construction of barriers with trunks and branches favored higher runoff and erosion rates in the intervened areas with respect to the not intervened areas. The ichnological analysis showed that arthropods of Formicidae family and Lycosidae sp. genre were the main organisms that recolonized post-fire scenarios; moreover, a lower ichnodiversity is observed in the not intervened area, although with a greater abundance, with respect to the intervened and reference area. According to our results, 20 months after the fire most soil physical-chemical properties did not experiment significant differences in relation to unburned reference area. Our erosion estimation suggested the hydrological correction measures were not appropriate to reduce erosion rates and led to higher soil losses. Moreover, our ichnological study supports the domination by pioneer and opportunist organisms in the recolonization of burned areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
13
期刊介绍: The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.
期刊最新文献
An Educational Gaze From the International Union of Soil Sciences The “Soil Skills” Pedagogical Approach Conjugated With Soil Judging Contests Ground Fire Legacy Effects on Water-Dynamics of Volcanic Tropical Soils Soil Burn Severities Evaluation Using Micromorphology and Morphometry Traits After a Prescribed Burn in a Managed Forest Impact of Seasonality on Copper Bioavailaility to Crabs (Ucides cordatus, Linnaeus, 1763) in Mangrove Soils of Todos os Santos Bay (Bahia, North Eastern Brazil)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1