弹性点支承约束梁的大振幅受迫振动

Q2 Engineering Engineering Transactions Pub Date : 2021-07-09 DOI:10.24423/ENGTRANS.1290.20210709
H. Fakhreddine, A. Adri, M. Chajdi, S. Rifai, R. Benamar
{"title":"弹性点支承约束梁的大振幅受迫振动","authors":"H. Fakhreddine, A. Adri, M. Chajdi, S. Rifai, R. Benamar","doi":"10.24423/ENGTRANS.1290.20210709","DOIUrl":null,"url":null,"abstract":"The present paper concerns the study of geometrically non-linear forced vibrations of beams resting on two different types of springs: rotational and translational. Assuming that the motion is harmonic, the displacement is extended as a series of spatial functions determined by solving the linear problem. Hamilton’s principle and spectral analysis are used to reduce the problem to a non-linear algebraic system solved using a previously developed approximate method. The effects of the nature of the added springs and their location on the non-linear behaviour of the beam are examined. A multimode approach is used in the forced case to obtain results over a wide range of vibration amplitudes. This leads to examining the non-linear forced dynamic response for different positions of each spring and different levels of excitations. Following a parametric study, the non-linear forced mode shapes and their associated bending moments are presented for different levels of excitations and for different vibration amplitudes to give an estimation of the stress distribution over the beam length.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large Amplitude Forced Vibrations of Restrained Beams Resting on Elastic Point Supports\",\"authors\":\"H. Fakhreddine, A. Adri, M. Chajdi, S. Rifai, R. Benamar\",\"doi\":\"10.24423/ENGTRANS.1290.20210709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper concerns the study of geometrically non-linear forced vibrations of beams resting on two different types of springs: rotational and translational. Assuming that the motion is harmonic, the displacement is extended as a series of spatial functions determined by solving the linear problem. Hamilton’s principle and spectral analysis are used to reduce the problem to a non-linear algebraic system solved using a previously developed approximate method. The effects of the nature of the added springs and their location on the non-linear behaviour of the beam are examined. A multimode approach is used in the forced case to obtain results over a wide range of vibration amplitudes. This leads to examining the non-linear forced dynamic response for different positions of each spring and different levels of excitations. Following a parametric study, the non-linear forced mode shapes and their associated bending moments are presented for different levels of excitations and for different vibration amplitudes to give an estimation of the stress distribution over the beam length.\",\"PeriodicalId\":38552,\"journal\":{\"name\":\"Engineering Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24423/ENGTRANS.1290.20210709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1290.20210709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了两种不同类型弹簧(旋转弹簧和平移弹簧)上梁的几何非线性强迫振动。假设运动是谐波的,位移被扩展为通过求解线性问题确定的一系列空间函数。汉密尔顿原理和谱分析用于将问题简化为使用先前开发的近似方法求解的非线性代数系统。研究了附加弹簧的性质及其位置对梁非线性行为的影响。在强制情况下使用多模式方法来获得宽振幅范围内的结果。这导致检查每个弹簧的不同位置和不同激励水平的非线性强迫动态响应。在参数研究之后,给出了不同激励水平和不同振幅下的非线性受力振型及其相关弯矩,以估计梁长度上的应力分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large Amplitude Forced Vibrations of Restrained Beams Resting on Elastic Point Supports
The present paper concerns the study of geometrically non-linear forced vibrations of beams resting on two different types of springs: rotational and translational. Assuming that the motion is harmonic, the displacement is extended as a series of spatial functions determined by solving the linear problem. Hamilton’s principle and spectral analysis are used to reduce the problem to a non-linear algebraic system solved using a previously developed approximate method. The effects of the nature of the added springs and their location on the non-linear behaviour of the beam are examined. A multimode approach is used in the forced case to obtain results over a wide range of vibration amplitudes. This leads to examining the non-linear forced dynamic response for different positions of each spring and different levels of excitations. Following a parametric study, the non-linear forced mode shapes and their associated bending moments are presented for different levels of excitations and for different vibration amplitudes to give an estimation of the stress distribution over the beam length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Transactions
Engineering Transactions Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
期刊介绍: Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.
期刊最新文献
Investigation of non-stationary processes of an elastic half-space with a built-in elastic cylinder Free vibrations of a nonhomogeneous rod-cylindrical shell-fluid system Mixed-type variational principle for creep problems considering the aggressiveness of external fields Nonlinear feedback control of motion and power of moving sources during heating of the rod Academician Azat Mirzajanzade – 95
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1