Neil Ward, Dean P. Walker, Richard J. Keane, John H. Marsham, Adam A. Scaife, Cathryn E. Birch, Ben Maybee
{"title":"通过刚果纬向风预测东非长雨","authors":"Neil Ward, Dean P. Walker, Richard J. Keane, John H. Marsham, Adam A. Scaife, Cathryn E. Birch, Ben Maybee","doi":"10.1002/asl.1185","DOIUrl":null,"url":null,"abstract":"<p>East Africa is highly vulnerable to extreme weather events, such as droughts and floods. Skillful seasonal forecasts exist for the October–November–December short rains, enabling informed decisions, whereas seasonal forecasts for the March–April–May (MAM) long rains have historically had low skill, limiting preparation capacity. Therefore, improved long rains prediction is a high priority and would contribute to climate change resilience in the region. Recent work has highlighted how lower-troposphere Congo zonal winds in MAM strongly impact regional moisture fluxes and the long rains total precipitation. We therefore approach long rains predictability through the predictability of the Congo winds. We analyze a set of hindcasts from a dynamical prediction system that is able to reproduce the long rains—Congo winds relationship in its individual ensemble members. Encouragingly, in observations, the strength of MAM Congo zonal winds and East Africa rainfall show substantial correlation with the MAM Atlantic (including North Atlantic Oscillation, NAO) and Indo-Pacific variability, suggestive of ocean influence and potential predictability. However, these features are replaced by different teleconnections in the hindcast ensemble mean fields. This is also true for NAO linkage to Congo winds, despite correct representation in individual members, and good skill in hindcasting the NAO itself. The net effect is strongly negative skill for the Congo winds. We explore statistical correction methods, including using the Congo zonal wind as an anchor index in a signal-to-noise calibration for the long rains. This is considered a demonstration of concept, for subsequent implementation using models with better Congo zonal wind skill. Indeed, the clear signals found in the Atlantic (including Mediterranean) and Indo-Pacific, studied here both in observations and a dynamical prediction system, motivate evaluation of these features across other prediction systems, and offer the prospect of improved physically-informed long rains dynamical predictions.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1185","citationCount":"0","resultStr":"{\"title\":\"Predictability of the East Africa long rains through Congo zonal winds\",\"authors\":\"Neil Ward, Dean P. Walker, Richard J. Keane, John H. Marsham, Adam A. Scaife, Cathryn E. Birch, Ben Maybee\",\"doi\":\"10.1002/asl.1185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>East Africa is highly vulnerable to extreme weather events, such as droughts and floods. Skillful seasonal forecasts exist for the October–November–December short rains, enabling informed decisions, whereas seasonal forecasts for the March–April–May (MAM) long rains have historically had low skill, limiting preparation capacity. Therefore, improved long rains prediction is a high priority and would contribute to climate change resilience in the region. Recent work has highlighted how lower-troposphere Congo zonal winds in MAM strongly impact regional moisture fluxes and the long rains total precipitation. We therefore approach long rains predictability through the predictability of the Congo winds. We analyze a set of hindcasts from a dynamical prediction system that is able to reproduce the long rains—Congo winds relationship in its individual ensemble members. Encouragingly, in observations, the strength of MAM Congo zonal winds and East Africa rainfall show substantial correlation with the MAM Atlantic (including North Atlantic Oscillation, NAO) and Indo-Pacific variability, suggestive of ocean influence and potential predictability. However, these features are replaced by different teleconnections in the hindcast ensemble mean fields. This is also true for NAO linkage to Congo winds, despite correct representation in individual members, and good skill in hindcasting the NAO itself. The net effect is strongly negative skill for the Congo winds. We explore statistical correction methods, including using the Congo zonal wind as an anchor index in a signal-to-noise calibration for the long rains. This is considered a demonstration of concept, for subsequent implementation using models with better Congo zonal wind skill. Indeed, the clear signals found in the Atlantic (including Mediterranean) and Indo-Pacific, studied here both in observations and a dynamical prediction system, motivate evaluation of these features across other prediction systems, and offer the prospect of improved physically-informed long rains dynamical predictions.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1185\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1185","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Predictability of the East Africa long rains through Congo zonal winds
East Africa is highly vulnerable to extreme weather events, such as droughts and floods. Skillful seasonal forecasts exist for the October–November–December short rains, enabling informed decisions, whereas seasonal forecasts for the March–April–May (MAM) long rains have historically had low skill, limiting preparation capacity. Therefore, improved long rains prediction is a high priority and would contribute to climate change resilience in the region. Recent work has highlighted how lower-troposphere Congo zonal winds in MAM strongly impact regional moisture fluxes and the long rains total precipitation. We therefore approach long rains predictability through the predictability of the Congo winds. We analyze a set of hindcasts from a dynamical prediction system that is able to reproduce the long rains—Congo winds relationship in its individual ensemble members. Encouragingly, in observations, the strength of MAM Congo zonal winds and East Africa rainfall show substantial correlation with the MAM Atlantic (including North Atlantic Oscillation, NAO) and Indo-Pacific variability, suggestive of ocean influence and potential predictability. However, these features are replaced by different teleconnections in the hindcast ensemble mean fields. This is also true for NAO linkage to Congo winds, despite correct representation in individual members, and good skill in hindcasting the NAO itself. The net effect is strongly negative skill for the Congo winds. We explore statistical correction methods, including using the Congo zonal wind as an anchor index in a signal-to-noise calibration for the long rains. This is considered a demonstration of concept, for subsequent implementation using models with better Congo zonal wind skill. Indeed, the clear signals found in the Atlantic (including Mediterranean) and Indo-Pacific, studied here both in observations and a dynamical prediction system, motivate evaluation of these features across other prediction systems, and offer the prospect of improved physically-informed long rains dynamical predictions.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.