基于GPS的车辆移动功率模型的验证

G. Bozdech, P. Ayers, D. Irick
{"title":"基于GPS的车辆移动功率模型的验证","authors":"G. Bozdech, P. Ayers, D. Irick","doi":"10.1504/ijvp.2019.10025784","DOIUrl":null,"url":null,"abstract":"Recently, military vehicles have been equipped with hybrid, diesel-electric drives to improve fuel efficiency and stealth capabilities, and these vehicles require accurate power duty cycle estimates. A GPS-based mobility power and duty cycle model was developed and is used to predict the vehicle power requirements. The dynamic vehicle parameters needed to estimate the forces and power developed during locomotion are determined from the global positioning system (GPS) tracking data. Controlled tests were performed and the predicted mobility power values predicted from a GPS receiver were compared to the measured drivewheel power estimated from engine data transmitted on the vehicle's controller area network (CAN). The results from the validation tests indicated that the model was reasonably accurate in predicting the average power requirements of the vehicle.","PeriodicalId":52169,"journal":{"name":"International Journal of Vehicle Performance","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of a GPS-based vehicle mobility power model\",\"authors\":\"G. Bozdech, P. Ayers, D. Irick\",\"doi\":\"10.1504/ijvp.2019.10025784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, military vehicles have been equipped with hybrid, diesel-electric drives to improve fuel efficiency and stealth capabilities, and these vehicles require accurate power duty cycle estimates. A GPS-based mobility power and duty cycle model was developed and is used to predict the vehicle power requirements. The dynamic vehicle parameters needed to estimate the forces and power developed during locomotion are determined from the global positioning system (GPS) tracking data. Controlled tests were performed and the predicted mobility power values predicted from a GPS receiver were compared to the measured drivewheel power estimated from engine data transmitted on the vehicle's controller area network (CAN). The results from the validation tests indicated that the model was reasonably accurate in predicting the average power requirements of the vehicle.\",\"PeriodicalId\":52169,\"journal\":{\"name\":\"International Journal of Vehicle Performance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvp.2019.10025784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvp.2019.10025784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

最近,军用车辆配备了混合动力、柴电驱动,以提高燃油效率和隐身能力,这些车辆需要准确的功率占空比估计。开发了一个基于GPS的移动功率和占空比模型,用于预测车辆功率需求。根据全球定位系统(GPS)跟踪数据确定估计运动过程中产生的力和功率所需的动态车辆参数。进行受控测试,并将从GPS接收器预测的预测机动功率值与从车辆控制器局域网(CAN)上传输的发动机数据估计的测量驱动轮功率进行比较。验证测试的结果表明,该模型在预测车辆的平均功率要求方面相当准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Validation of a GPS-based vehicle mobility power model
Recently, military vehicles have been equipped with hybrid, diesel-electric drives to improve fuel efficiency and stealth capabilities, and these vehicles require accurate power duty cycle estimates. A GPS-based mobility power and duty cycle model was developed and is used to predict the vehicle power requirements. The dynamic vehicle parameters needed to estimate the forces and power developed during locomotion are determined from the global positioning system (GPS) tracking data. Controlled tests were performed and the predicted mobility power values predicted from a GPS receiver were compared to the measured drivewheel power estimated from engine data transmitted on the vehicle's controller area network (CAN). The results from the validation tests indicated that the model was reasonably accurate in predicting the average power requirements of the vehicle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Performance
International Journal of Vehicle Performance Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.20
自引率
0.00%
发文量
30
期刊最新文献
Six-sigma robust design optimisation of an electric bus considering crashworthiness and lightweight Analytical model for combined ride and handling with leaf spring suspension in commercial vehicles Shifting control optimisation of automatic transmission with congested conditions identification based on the support vector machine Dual evaporator system as an alternative for air-conditioning and refrigeration in automobiles Performance analysis of automotive exhaust muffler characteristics integrating supervised machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1