Matteo Pozza, Patrick K. Nicholson, D. Lugones, Ashwin Rao, H. Flinck, S. Tarkoma
{"title":"论5G网络切片的重构","authors":"Matteo Pozza, Patrick K. Nicholson, D. Lugones, Ashwin Rao, H. Flinck, S. Tarkoma","doi":"10.1109/JSAC.2020.2986898","DOIUrl":null,"url":null,"abstract":"The virtual resources of 5G networks are expected to scale and support migration to other locations within the substrate. In this context, a configuration for 5G network slices details the instantaneous mapping of the virtual resources across all slices on the substrate, and a feasible configuration satisfies the Service-Level Objectives (SLOs) without overloading the substrate. Reconfiguring a network from a given source configuration to the desired target configuration involves identifying an ordered sequence of feasible configurations from the source to the target. The proposed solutions for finding such a sequence are optimized for data centers and cannot be used as-is for reconfiguring 5G network slices. We present Matryoshka, our divide-and-conquer approach for finding a sequence of feasible configurations that can be used to reconfigure 5G network slices. Unlike previous approaches, Matryoshka also considers the bandwidth and latency constraints between the network functions of network slices. Evaluating Matryoshka required a dataset of pairs of source and target configurations. Because such a dataset is currently unavailable, we analyze proof of concept roll-outs, trends in standardization bodies, and research sources to compile an input dataset. On using Matryoshka on our dataset, we observe that it yields close-to-optimal reconfiguration sequences 10X faster than existing approaches.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1542-1554"},"PeriodicalIF":13.8000,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986898","citationCount":"16","resultStr":"{\"title\":\"On Reconfiguring 5G Network Slices\",\"authors\":\"Matteo Pozza, Patrick K. Nicholson, D. Lugones, Ashwin Rao, H. Flinck, S. Tarkoma\",\"doi\":\"10.1109/JSAC.2020.2986898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The virtual resources of 5G networks are expected to scale and support migration to other locations within the substrate. In this context, a configuration for 5G network slices details the instantaneous mapping of the virtual resources across all slices on the substrate, and a feasible configuration satisfies the Service-Level Objectives (SLOs) without overloading the substrate. Reconfiguring a network from a given source configuration to the desired target configuration involves identifying an ordered sequence of feasible configurations from the source to the target. The proposed solutions for finding such a sequence are optimized for data centers and cannot be used as-is for reconfiguring 5G network slices. We present Matryoshka, our divide-and-conquer approach for finding a sequence of feasible configurations that can be used to reconfigure 5G network slices. Unlike previous approaches, Matryoshka also considers the bandwidth and latency constraints between the network functions of network slices. Evaluating Matryoshka required a dataset of pairs of source and target configurations. Because such a dataset is currently unavailable, we analyze proof of concept roll-outs, trends in standardization bodies, and research sources to compile an input dataset. On using Matryoshka on our dataset, we observe that it yields close-to-optimal reconfiguration sequences 10X faster than existing approaches.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"38 1\",\"pages\":\"1542-1554\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2020-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986898\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2020.2986898\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2020.2986898","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The virtual resources of 5G networks are expected to scale and support migration to other locations within the substrate. In this context, a configuration for 5G network slices details the instantaneous mapping of the virtual resources across all slices on the substrate, and a feasible configuration satisfies the Service-Level Objectives (SLOs) without overloading the substrate. Reconfiguring a network from a given source configuration to the desired target configuration involves identifying an ordered sequence of feasible configurations from the source to the target. The proposed solutions for finding such a sequence are optimized for data centers and cannot be used as-is for reconfiguring 5G network slices. We present Matryoshka, our divide-and-conquer approach for finding a sequence of feasible configurations that can be used to reconfigure 5G network slices. Unlike previous approaches, Matryoshka also considers the bandwidth and latency constraints between the network functions of network slices. Evaluating Matryoshka required a dataset of pairs of source and target configurations. Because such a dataset is currently unavailable, we analyze proof of concept roll-outs, trends in standardization bodies, and research sources to compile an input dataset. On using Matryoshka on our dataset, we observe that it yields close-to-optimal reconfiguration sequences 10X faster than existing approaches.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.