计算机辅助设计与分析的集成:在多体车辆系统中的应用

A. Shabana
{"title":"计算机辅助设计与分析的集成:在多体车辆系统中的应用","authors":"A. Shabana","doi":"10.1504/IJVP.2019.10021235","DOIUrl":null,"url":null,"abstract":"Virtual design and durability investigations are currently performed in automotive industries using three different and incompatible systems: computer-aided design (CAD) system for geometry creation, finite element (FE) software for developing the analysis mesh, and multibody system (MBS) software for automatically generating and numerically solving the differential-algebraic equations (DAE's). This paper proposes a new computer-aided engineering (CAE) approach based on the integration of computer-aided design and analysis (I-CAD-A). The proposed mechanics-based approach achieves seamless geometry/analysis integration, and allows for solid modelling multi-component systems from the outset. The geometrically accurate mechanics-based solid models can be systematically used as the analysis meshes in the small deformation floating frame of reference (FFR) and/or in the large deformation absolute nodal coordinate formulation (ANCF) investigations. In this new approach, ANCF finite elements are used as the basis for creating the geometry for both small and large deformation analyses. In the case of small deformations, ANCF geometry is systematically converted to reduced-order consistent rotation-based formulation (CRBF) FFR mesh, which can be systematically used with standard coordinate reduction techniques to eliminate high-frequency insignificant modes of vibration. The paper discusses the fundamental differences between the proposed method and the isogeometric analysis (IGA) approach and presents illustrative pilot examples to demonstrate the new concepts and the feasibility of developing the mechanics-based design procedure.","PeriodicalId":52169,"journal":{"name":"International Journal of Vehicle Performance","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Integration of computer-aided design and analysis: application to multibody vehicle systems\",\"authors\":\"A. Shabana\",\"doi\":\"10.1504/IJVP.2019.10021235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual design and durability investigations are currently performed in automotive industries using three different and incompatible systems: computer-aided design (CAD) system for geometry creation, finite element (FE) software for developing the analysis mesh, and multibody system (MBS) software for automatically generating and numerically solving the differential-algebraic equations (DAE's). This paper proposes a new computer-aided engineering (CAE) approach based on the integration of computer-aided design and analysis (I-CAD-A). The proposed mechanics-based approach achieves seamless geometry/analysis integration, and allows for solid modelling multi-component systems from the outset. The geometrically accurate mechanics-based solid models can be systematically used as the analysis meshes in the small deformation floating frame of reference (FFR) and/or in the large deformation absolute nodal coordinate formulation (ANCF) investigations. In this new approach, ANCF finite elements are used as the basis for creating the geometry for both small and large deformation analyses. In the case of small deformations, ANCF geometry is systematically converted to reduced-order consistent rotation-based formulation (CRBF) FFR mesh, which can be systematically used with standard coordinate reduction techniques to eliminate high-frequency insignificant modes of vibration. The paper discusses the fundamental differences between the proposed method and the isogeometric analysis (IGA) approach and presents illustrative pilot examples to demonstrate the new concepts and the feasibility of developing the mechanics-based design procedure.\",\"PeriodicalId\":52169,\"journal\":{\"name\":\"International Journal of Vehicle Performance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVP.2019.10021235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVP.2019.10021235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 9

摘要

目前,汽车行业使用三种不同且不兼容的系统进行虚拟设计和耐久性研究:用于几何创建的计算机辅助设计(CAD)系统、用于开发分析网格的有限元(FE)软件和用于自动生成和数值求解微分代数方程(DAE)的多体系统(MBS)软件。本文提出了一种新的基于计算机辅助设计与分析集成(I-CAD-a)的计算机辅助工程(CAE)方法。所提出的基于力学的方法实现了无缝的几何/分析集成,并允许从一开始就对多部件系统进行实体建模。基于几何精确力学的实体模型可以系统地用作小变形浮动参考系(FFR)和/或大变形绝对节点坐标公式(ANCF)研究中的分析网格。在这种新方法中,ANCF有限元被用作创建小变形和大变形分析的几何结构的基础。在小变形的情况下,ANCF几何结构被系统地转换为基于降阶一致旋转公式(CRBF)的FFR网格,该网格可以与标准坐标归约技术一起系统地使用,以消除高频不重要的振动模式。本文讨论了所提出的方法与等几何分析(IGA)方法之间的基本区别,并给出了示例性的试点实例,以证明开发基于力学的设计程序的新概念和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of computer-aided design and analysis: application to multibody vehicle systems
Virtual design and durability investigations are currently performed in automotive industries using three different and incompatible systems: computer-aided design (CAD) system for geometry creation, finite element (FE) software for developing the analysis mesh, and multibody system (MBS) software for automatically generating and numerically solving the differential-algebraic equations (DAE's). This paper proposes a new computer-aided engineering (CAE) approach based on the integration of computer-aided design and analysis (I-CAD-A). The proposed mechanics-based approach achieves seamless geometry/analysis integration, and allows for solid modelling multi-component systems from the outset. The geometrically accurate mechanics-based solid models can be systematically used as the analysis meshes in the small deformation floating frame of reference (FFR) and/or in the large deformation absolute nodal coordinate formulation (ANCF) investigations. In this new approach, ANCF finite elements are used as the basis for creating the geometry for both small and large deformation analyses. In the case of small deformations, ANCF geometry is systematically converted to reduced-order consistent rotation-based formulation (CRBF) FFR mesh, which can be systematically used with standard coordinate reduction techniques to eliminate high-frequency insignificant modes of vibration. The paper discusses the fundamental differences between the proposed method and the isogeometric analysis (IGA) approach and presents illustrative pilot examples to demonstrate the new concepts and the feasibility of developing the mechanics-based design procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Performance
International Journal of Vehicle Performance Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.20
自引率
0.00%
发文量
30
期刊最新文献
Six-sigma robust design optimisation of an electric bus considering crashworthiness and lightweight Analytical model for combined ride and handling with leaf spring suspension in commercial vehicles Shifting control optimisation of automatic transmission with congested conditions identification based on the support vector machine Dual evaporator system as an alternative for air-conditioning and refrigeration in automobiles Performance analysis of automotive exhaust muffler characteristics integrating supervised machine learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1