{"title":"锡掺杂对高频应用锂铁氧体结构、磁性和功率损耗性能的影响","authors":"Neelam Singh , Manish Kumar Kansal , Praduman Kumar , Samiksha Dabas , Vivek Verma","doi":"10.1016/j.physo.2023.100155","DOIUrl":null,"url":null,"abstract":"<div><p>The role of Sn doping on the structural, magnetic and power loss properties of Li<sub>0.5+0.5x</sub>Sn<sub>x</sub>Fe<sub>2.5-1.5x</sub>O<sub>4</sub> ferrites (x = 0.0 to 0.20 in step of 0.05) + 0.5 wt % Bi<sub>2</sub>O<sub>3</sub>, prepared by solid state technique, has been investigated. X-ray diffraction reveals that Sn ions doped in lithium ferrite up to small concentration. Surface morphology recorded by SEM micrographs illustrates uniform, well connected grain growth in all samples. A small concentration of Sn doping in lithium ferrite improves the grain growth and densification. Magnetic parameters have been evaluated by M − H curves measured at room temperature by VSM. Saturation magnetization was found to be decreasing with Sn concentration in Li<sub>0.5+0.5x</sub>Sn<sub>x</sub>Fe<sub>2.5-1.5x</sub>O<sub>4</sub> ferrites. In view of applicability of prepared samples for power devices, the magnetic permeability (μ* = μ′-jμ'′) has been recorded in the frequency range of 1 MHz–10<sup>3</sup> MHz at room temperature. Further, Power loss response has also been recorded in presence of magnetic induction (B = 10 mT) in frequency range of 50 kHz to 3 MHz. It was depicted a significant reduction in power loss in Sn = 0.05 doped lithium ferrite sample. Reduction in power loss with Sn doping makes it suitable for power applications.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"16 ","pages":"Article 100155"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Sn doping on structural, magnetic and power loss properties of lithium ferrites for high frequency applications\",\"authors\":\"Neelam Singh , Manish Kumar Kansal , Praduman Kumar , Samiksha Dabas , Vivek Verma\",\"doi\":\"10.1016/j.physo.2023.100155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The role of Sn doping on the structural, magnetic and power loss properties of Li<sub>0.5+0.5x</sub>Sn<sub>x</sub>Fe<sub>2.5-1.5x</sub>O<sub>4</sub> ferrites (x = 0.0 to 0.20 in step of 0.05) + 0.5 wt % Bi<sub>2</sub>O<sub>3</sub>, prepared by solid state technique, has been investigated. X-ray diffraction reveals that Sn ions doped in lithium ferrite up to small concentration. Surface morphology recorded by SEM micrographs illustrates uniform, well connected grain growth in all samples. A small concentration of Sn doping in lithium ferrite improves the grain growth and densification. Magnetic parameters have been evaluated by M − H curves measured at room temperature by VSM. Saturation magnetization was found to be decreasing with Sn concentration in Li<sub>0.5+0.5x</sub>Sn<sub>x</sub>Fe<sub>2.5-1.5x</sub>O<sub>4</sub> ferrites. In view of applicability of prepared samples for power devices, the magnetic permeability (μ* = μ′-jμ'′) has been recorded in the frequency range of 1 MHz–10<sup>3</sup> MHz at room temperature. Further, Power loss response has also been recorded in presence of magnetic induction (B = 10 mT) in frequency range of 50 kHz to 3 MHz. It was depicted a significant reduction in power loss in Sn = 0.05 doped lithium ferrite sample. Reduction in power loss with Sn doping makes it suitable for power applications.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"16 \",\"pages\":\"Article 100155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032623000200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032623000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Effect of Sn doping on structural, magnetic and power loss properties of lithium ferrites for high frequency applications
The role of Sn doping on the structural, magnetic and power loss properties of Li0.5+0.5xSnxFe2.5-1.5xO4 ferrites (x = 0.0 to 0.20 in step of 0.05) + 0.5 wt % Bi2O3, prepared by solid state technique, has been investigated. X-ray diffraction reveals that Sn ions doped in lithium ferrite up to small concentration. Surface morphology recorded by SEM micrographs illustrates uniform, well connected grain growth in all samples. A small concentration of Sn doping in lithium ferrite improves the grain growth and densification. Magnetic parameters have been evaluated by M − H curves measured at room temperature by VSM. Saturation magnetization was found to be decreasing with Sn concentration in Li0.5+0.5xSnxFe2.5-1.5xO4 ferrites. In view of applicability of prepared samples for power devices, the magnetic permeability (μ* = μ′-jμ'′) has been recorded in the frequency range of 1 MHz–103 MHz at room temperature. Further, Power loss response has also been recorded in presence of magnetic induction (B = 10 mT) in frequency range of 50 kHz to 3 MHz. It was depicted a significant reduction in power loss in Sn = 0.05 doped lithium ferrite sample. Reduction in power loss with Sn doping makes it suitable for power applications.