{"title":"SKH2钨铬钴合金外圆磨削中切削力和振动对表面粗糙度的影响分析","authors":"Long Hoang, L. T. Nguyen","doi":"10.36897/jme/168240","DOIUrl":null,"url":null,"abstract":"The surface roughness of a part during external cylindrical grinding is directly impacted by cutting force and vibration, which are intermediate parameters. To improve the quality of finished parts, studying and controlling these parameters is essential. In this research, the Taguchi method combined with ANOVA analysis was utilized to analyse the effects of feed rate, cutting depth, and rotational speeds on cutting force and vibration amplitude. The test material used was SKH2 steel, which was heat-treated to a hardness of 60 HRC. The research aimed to investigate the relationship between cutting force, vibration, and surface roughness. The study concludes with an analysis of the influence of cutting force and vibration on the surface roughness of parts during external cylindrical grinding. The results show that as cutting force and vibration increase, the surface roughness of the workpiece in external grinding will also increase, and conversely when cutting force and vibration decrease, the surface roughness will decrease","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysing the Impact of Cutting Force and Vibration on Surface Roughness in External Cylindrical Grinding of SKH2 Stell\",\"authors\":\"Long Hoang, L. T. Nguyen\",\"doi\":\"10.36897/jme/168240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surface roughness of a part during external cylindrical grinding is directly impacted by cutting force and vibration, which are intermediate parameters. To improve the quality of finished parts, studying and controlling these parameters is essential. In this research, the Taguchi method combined with ANOVA analysis was utilized to analyse the effects of feed rate, cutting depth, and rotational speeds on cutting force and vibration amplitude. The test material used was SKH2 steel, which was heat-treated to a hardness of 60 HRC. The research aimed to investigate the relationship between cutting force, vibration, and surface roughness. The study concludes with an analysis of the influence of cutting force and vibration on the surface roughness of parts during external cylindrical grinding. The results show that as cutting force and vibration increase, the surface roughness of the workpiece in external grinding will also increase, and conversely when cutting force and vibration decrease, the surface roughness will decrease\",\"PeriodicalId\":37821,\"journal\":{\"name\":\"Journal of Machine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36897/jme/168240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/168240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Analysing the Impact of Cutting Force and Vibration on Surface Roughness in External Cylindrical Grinding of SKH2 Stell
The surface roughness of a part during external cylindrical grinding is directly impacted by cutting force and vibration, which are intermediate parameters. To improve the quality of finished parts, studying and controlling these parameters is essential. In this research, the Taguchi method combined with ANOVA analysis was utilized to analyse the effects of feed rate, cutting depth, and rotational speeds on cutting force and vibration amplitude. The test material used was SKH2 steel, which was heat-treated to a hardness of 60 HRC. The research aimed to investigate the relationship between cutting force, vibration, and surface roughness. The study concludes with an analysis of the influence of cutting force and vibration on the surface roughness of parts during external cylindrical grinding. The results show that as cutting force and vibration increase, the surface roughness of the workpiece in external grinding will also increase, and conversely when cutting force and vibration decrease, the surface roughness will decrease
期刊介绍:
ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.