用11B NMR研究了正碳硼烷玻璃晶的低温相变和重定向动力学

Q1 Physics and Astronomy Journal of Non-Crystalline Solids: X Pub Date : 2023-06-01 DOI:10.1016/j.nocx.2023.100180
Joachim Beerwerth, Roland Böhmer
{"title":"用11B NMR研究了正碳硼烷玻璃晶的低温相变和重定向动力学","authors":"Joachim Beerwerth,&nbsp;Roland Böhmer","doi":"10.1016/j.nocx.2023.100180","DOIUrl":null,"url":null,"abstract":"<div><p>Ortho-carborane condenses into a plastically crystalline state in which the icosahedrally shaped molecules perform various kinds of motion. Using <sup>11</sup>B nuclear magnetic resonance (NMR), the molecular motions and the phase transitions occurring in solid ortho-carborane are revisited. The motional narrowing of the <sup>11</sup>B spectra and the spin-relaxation times are monitored over wider temperature ranges than accessed previously. The spin-relaxation times are successfully described using an approach that takes second-order quadrupolar effects and a distribution of correlation times explicitly into account. Our work resolves a discrepancy previously noted for ortho-carborane when comparing activation energies from dielectric spectroscopy with those from NMR studies. In the temperature range between about 160 and 210 K a fast contribution to the longitudinal spin-lattice relaxation is observed which we interpret as a reporter of phase transitions occurring in ortho-carborane. Quantum chemical calculations are performed, not the least to assess possible effects of cross-correlated relaxation phenomena and to check whether or not the <sup>11</sup>B quadrupolar coupling constants display significant intermolecular contributions.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100180"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-temperature phase transitions and reorientational dynamics studied by 11B NMR in glassy crystal ortho-carborane\",\"authors\":\"Joachim Beerwerth,&nbsp;Roland Böhmer\",\"doi\":\"10.1016/j.nocx.2023.100180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ortho-carborane condenses into a plastically crystalline state in which the icosahedrally shaped molecules perform various kinds of motion. Using <sup>11</sup>B nuclear magnetic resonance (NMR), the molecular motions and the phase transitions occurring in solid ortho-carborane are revisited. The motional narrowing of the <sup>11</sup>B spectra and the spin-relaxation times are monitored over wider temperature ranges than accessed previously. The spin-relaxation times are successfully described using an approach that takes second-order quadrupolar effects and a distribution of correlation times explicitly into account. Our work resolves a discrepancy previously noted for ortho-carborane when comparing activation energies from dielectric spectroscopy with those from NMR studies. In the temperature range between about 160 and 210 K a fast contribution to the longitudinal spin-lattice relaxation is observed which we interpret as a reporter of phase transitions occurring in ortho-carborane. Quantum chemical calculations are performed, not the least to assess possible effects of cross-correlated relaxation phenomena and to check whether or not the <sup>11</sup>B quadrupolar coupling constants display significant intermolecular contributions.</p></div>\",\"PeriodicalId\":37132,\"journal\":{\"name\":\"Journal of Non-Crystalline Solids: X\",\"volume\":\"18 \",\"pages\":\"Article 100180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Crystalline Solids: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590159123000328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Crystalline Solids: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590159123000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

摘要

正碳硼烷凝结成塑性结晶状态,二十面体形状的分子在其中进行各种运动。利用11B核磁共振(NMR),重新研究了固体邻碳硼烷中发生的分子运动和相变。在比以前更宽的温度范围内监测11B光谱的运动变窄和自旋弛豫时间。使用一种方法成功地描述了自旋弛豫时间,该方法明确考虑了二阶四极效应和相关时间的分布。我们的工作解决了之前在比较介电光谱和核磁共振研究的活化能时发现的邻碳硼烷的差异。在大约160和210之间的温度范围内 K观察到对纵向自旋晶格弛豫的快速贡献,我们将其解释为邻位碳硼烷中发生相变的报告子。进行量子化学计算,尤其是为了评估交叉相关弛豫现象的可能影响,并检查11B四极耦合常数是否显示出显著的分子间贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-temperature phase transitions and reorientational dynamics studied by 11B NMR in glassy crystal ortho-carborane

Ortho-carborane condenses into a plastically crystalline state in which the icosahedrally shaped molecules perform various kinds of motion. Using 11B nuclear magnetic resonance (NMR), the molecular motions and the phase transitions occurring in solid ortho-carborane are revisited. The motional narrowing of the 11B spectra and the spin-relaxation times are monitored over wider temperature ranges than accessed previously. The spin-relaxation times are successfully described using an approach that takes second-order quadrupolar effects and a distribution of correlation times explicitly into account. Our work resolves a discrepancy previously noted for ortho-carborane when comparing activation energies from dielectric spectroscopy with those from NMR studies. In the temperature range between about 160 and 210 K a fast contribution to the longitudinal spin-lattice relaxation is observed which we interpret as a reporter of phase transitions occurring in ortho-carborane. Quantum chemical calculations are performed, not the least to assess possible effects of cross-correlated relaxation phenomena and to check whether or not the 11B quadrupolar coupling constants display significant intermolecular contributions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Non-Crystalline Solids: X
Journal of Non-Crystalline Solids: X Materials Science-Materials Chemistry
CiteScore
3.20
自引率
0.00%
发文量
50
审稿时长
76 days
期刊最新文献
Editorial Board Preface Preface Altering the optical, physical, and TL Dosimetric properties of MgSO4:Dy2O3:B2O3 transparent glass ceramic system: Evaluating the impact of roughness control and ZnO inclusion Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1