Ashley Trudeau, Thomas Mehner, Thomas Klefoth, Sven Matern, Robert Nikolaus, Robert Arlinghaus
{"title":"湖泊深度改变了小型湖泊中欧亚鲈鱼个体发生生态位变化的轨迹","authors":"Ashley Trudeau, Thomas Mehner, Thomas Klefoth, Sven Matern, Robert Nikolaus, Robert Arlinghaus","doi":"10.1111/eff.12738","DOIUrl":null,"url":null,"abstract":"<p>The trophic niche of aquatic generalist predators is influenced by ontogeny, habitat characteristics, availability and type of prey, and competitive interactions. Many interrelated lake characteristics influence the availability of prey and may thereby impact foraging niches and the trajectory of ontogenetic niche shifts. Our work uses Eurasian perch (<i>Perca fluviatilis</i>) as a model species to examine the correlation of multiple lake and fish community characteristics with the size-dependency of perch populations' realised trophic niche. We used carbon and nitrogen stable isotopes to correlate the changes in perch trophic position across a gradient of total lengths in seven gravel pit lakes that differed in lake morphology, habitat heterogeneity, productivity, structural complexity, and fish community composition. Perch populations in lakes with more shallow-water habitat reached a higher trophic position at smaller sizes than perch in deeper lakes. However, the changes in trophic position with increasing size were less pronounced compared to perch from deeper lakes. Large individuals from the latter perch populations ultimately achieved higher mean trophic positions compared to fish from shallow lakes. Perch in lakes with more shallow-water habitat may, therefore, achieve lower rates of piscivory because of higher relative availability of macroinvertebrates or greater competition with zooplanktivores. Our results suggest that large, piscivorous perch are more likely to develop in deeper lakes, and that these changes in perch trophic position across ontogeny are more strongly related to the depth of lakes than to the type of structured habitat in the littoral zone.</p>","PeriodicalId":11422,"journal":{"name":"Ecology of Freshwater Fish","volume":"33 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eff.12738","citationCount":"0","resultStr":"{\"title\":\"Lake depth alters the trajectory of ontogenetic niche shifts in Eurasian perch (Perca fluviatilis) in small lakes\",\"authors\":\"Ashley Trudeau, Thomas Mehner, Thomas Klefoth, Sven Matern, Robert Nikolaus, Robert Arlinghaus\",\"doi\":\"10.1111/eff.12738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The trophic niche of aquatic generalist predators is influenced by ontogeny, habitat characteristics, availability and type of prey, and competitive interactions. Many interrelated lake characteristics influence the availability of prey and may thereby impact foraging niches and the trajectory of ontogenetic niche shifts. Our work uses Eurasian perch (<i>Perca fluviatilis</i>) as a model species to examine the correlation of multiple lake and fish community characteristics with the size-dependency of perch populations' realised trophic niche. We used carbon and nitrogen stable isotopes to correlate the changes in perch trophic position across a gradient of total lengths in seven gravel pit lakes that differed in lake morphology, habitat heterogeneity, productivity, structural complexity, and fish community composition. Perch populations in lakes with more shallow-water habitat reached a higher trophic position at smaller sizes than perch in deeper lakes. However, the changes in trophic position with increasing size were less pronounced compared to perch from deeper lakes. Large individuals from the latter perch populations ultimately achieved higher mean trophic positions compared to fish from shallow lakes. Perch in lakes with more shallow-water habitat may, therefore, achieve lower rates of piscivory because of higher relative availability of macroinvertebrates or greater competition with zooplanktivores. Our results suggest that large, piscivorous perch are more likely to develop in deeper lakes, and that these changes in perch trophic position across ontogeny are more strongly related to the depth of lakes than to the type of structured habitat in the littoral zone.</p>\",\"PeriodicalId\":11422,\"journal\":{\"name\":\"Ecology of Freshwater Fish\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eff.12738\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology of Freshwater Fish\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eff.12738\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology of Freshwater Fish","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eff.12738","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
Lake depth alters the trajectory of ontogenetic niche shifts in Eurasian perch (Perca fluviatilis) in small lakes
The trophic niche of aquatic generalist predators is influenced by ontogeny, habitat characteristics, availability and type of prey, and competitive interactions. Many interrelated lake characteristics influence the availability of prey and may thereby impact foraging niches and the trajectory of ontogenetic niche shifts. Our work uses Eurasian perch (Perca fluviatilis) as a model species to examine the correlation of multiple lake and fish community characteristics with the size-dependency of perch populations' realised trophic niche. We used carbon and nitrogen stable isotopes to correlate the changes in perch trophic position across a gradient of total lengths in seven gravel pit lakes that differed in lake morphology, habitat heterogeneity, productivity, structural complexity, and fish community composition. Perch populations in lakes with more shallow-water habitat reached a higher trophic position at smaller sizes than perch in deeper lakes. However, the changes in trophic position with increasing size were less pronounced compared to perch from deeper lakes. Large individuals from the latter perch populations ultimately achieved higher mean trophic positions compared to fish from shallow lakes. Perch in lakes with more shallow-water habitat may, therefore, achieve lower rates of piscivory because of higher relative availability of macroinvertebrates or greater competition with zooplanktivores. Our results suggest that large, piscivorous perch are more likely to develop in deeper lakes, and that these changes in perch trophic position across ontogeny are more strongly related to the depth of lakes than to the type of structured habitat in the littoral zone.
期刊介绍:
Ecology of Freshwater Fish publishes original contributions on all aspects of fish ecology in freshwater environments, including lakes, reservoirs, rivers, and streams. Manuscripts involving ecologically-oriented studies of behavior, conservation, development, genetics, life history, physiology, and host-parasite interactions are welcomed. Studies involving population ecology and community ecology are also of interest, as are evolutionary approaches including studies of population biology, evolutionary ecology, behavioral ecology, and historical ecology. Papers addressing the life stages of anadromous and catadromous species in estuaries and inshore coastal zones are considered if they contribute to the general understanding of freshwater fish ecology. Theoretical and modeling studies are suitable if they generate testable hypotheses, as are those with implications for fisheries. Manuscripts presenting analyses of published data are considered if they produce novel conclusions or syntheses. The journal publishes articles, fresh perspectives, and reviews and, occasionally, the proceedings of conferences and symposia.