实现布局和欧几里得距离检测的手势识别方法

Masarif A. Afandi, Sevia Indah Purnama, Risa Farid Crisianti
{"title":"实现布局和欧几里得距离检测的手势识别方法","authors":"Masarif A. Afandi, Sevia Indah Purnama, Risa Farid Crisianti","doi":"10.25077/JNTE.V9N1.756.2020","DOIUrl":null,"url":null,"abstract":"Signature is one of the biometrics that are widely used for important document authentication and verification. The existence of a signature as a form of validation and approval in important documents is mandatory. Along in current sophisticated technological developments, signing can be done using digital media such as cellphones or other media. The ability of the system that can be identify a person signature is important. This research aims to implement the Laplacian edge detection method and Euclidean distance to identify a person signature. The total image that used is 20 signatures from 5 different people while 15 signatures as data training image and 5 signatures as a data test image. The result of this research indicate that Laplacian edge detection method and Euclidean distance have an accuracy of 94% with 1 neighbor, with 2 neighbor has an accuracy of 60% and has an accuracy of 74% with 3 neighbor.  Keywords : signature, Laplacian edge detection and Euclidean distance Abstra k Tanda tangan adalah salah satu biometrik yang banyak digunakan untuk autentikasi dan verifikasi dokumen penting. Keberadaan tanda tangan sebagai bentuk pengesahan dan persetujuan dalam dokumen-dokumen penting adalah hal yang wajib. Seiring perkembangan teknologi saat ini, proses penandatanganan dapat dilakukan dalam media digital seperti handphone maupun media lainnya. Kemampuan sistem untuk mengidentifikasi tanda tangan seseorang menjadi penting karena banyak pemalsuan yang terjadi. Penelitian ini bertujuan untuk mengimplementasikan metode deteksi tepi Laplacian dan jarak Euclidean untuk mengidentifikasi tanda tangan seseorang. Total citra yang digunakan yaitu 20 tanda tangan dari 10 orang yang berbeda dimana 15 tanda tangan sebagai data citra latih dan 5 tanda tangan sebagai data citra uji. Hasil penelitian ini menunjukkan bahwa metode deteksi tepi Laplacian dan jarak Euclidean memiliki akurasi sebesar 94% dengan 1 ketetanggaan, dengan 2 ketetanggaan memiliki akurasi sebesar 60%, dan memiliki akurasi sebesar 74% dengan 3 ketetanggaan. Kata Kunci : tanda tangan , deteksi tepi Laplacian dan jarak Euclidean","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Implementasi Metode Deteksi Tepi Laplacian dan Jarak Euclidean untuk Identifikasi Tanda Tangan\",\"authors\":\"Masarif A. Afandi, Sevia Indah Purnama, Risa Farid Crisianti\",\"doi\":\"10.25077/JNTE.V9N1.756.2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signature is one of the biometrics that are widely used for important document authentication and verification. The existence of a signature as a form of validation and approval in important documents is mandatory. Along in current sophisticated technological developments, signing can be done using digital media such as cellphones or other media. The ability of the system that can be identify a person signature is important. This research aims to implement the Laplacian edge detection method and Euclidean distance to identify a person signature. The total image that used is 20 signatures from 5 different people while 15 signatures as data training image and 5 signatures as a data test image. The result of this research indicate that Laplacian edge detection method and Euclidean distance have an accuracy of 94% with 1 neighbor, with 2 neighbor has an accuracy of 60% and has an accuracy of 74% with 3 neighbor.  Keywords : signature, Laplacian edge detection and Euclidean distance Abstra k Tanda tangan adalah salah satu biometrik yang banyak digunakan untuk autentikasi dan verifikasi dokumen penting. Keberadaan tanda tangan sebagai bentuk pengesahan dan persetujuan dalam dokumen-dokumen penting adalah hal yang wajib. Seiring perkembangan teknologi saat ini, proses penandatanganan dapat dilakukan dalam media digital seperti handphone maupun media lainnya. Kemampuan sistem untuk mengidentifikasi tanda tangan seseorang menjadi penting karena banyak pemalsuan yang terjadi. Penelitian ini bertujuan untuk mengimplementasikan metode deteksi tepi Laplacian dan jarak Euclidean untuk mengidentifikasi tanda tangan seseorang. Total citra yang digunakan yaitu 20 tanda tangan dari 10 orang yang berbeda dimana 15 tanda tangan sebagai data citra latih dan 5 tanda tangan sebagai data citra uji. Hasil penelitian ini menunjukkan bahwa metode deteksi tepi Laplacian dan jarak Euclidean memiliki akurasi sebesar 94% dengan 1 ketetanggaan, dengan 2 ketetanggaan memiliki akurasi sebesar 60%, dan memiliki akurasi sebesar 74% dengan 3 ketetanggaan. Kata Kunci : tanda tangan , deteksi tepi Laplacian dan jarak Euclidean\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/JNTE.V9N1.756.2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/JNTE.V9N1.756.2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

签名是一种广泛应用于重要文件认证和验证的生物识别技术。在重要文件中,作为确认和批准形式的签名是强制性的。随着当前尖端技术的发展,签名可以使用数字媒体,如手机或其他媒体来完成。系统识别个人签名的能力是很重要的。本研究旨在实现拉普拉斯边缘检测方法和欧几里得距离对人的签名进行识别。使用的总图像是来自5个不同人的20个签名,其中15个签名作为数据训练图像,5个签名作为数据测试图像。研究结果表明,拉普拉斯边缘检测方法和欧几里得距离在1个邻居时准确率为94%,在2个邻居时准确率为60%,在3个邻居时准确率为74%。关键词:签名,拉普拉斯边缘检测,欧几里得距离abstract k Tanda tangan adalah salah satu生物特征,yang banyak digunakan untuk autentikasi danverfikasi dokumen pentingKeberadaan tanda tangan sebagai bentuk pengesahan dan persetujuan dalam dokumen dokumen penting adalah hal yang wajib。香港科技发展有限公司(Seiring perkembangan technologi saat ini),为香港传媒提供数码服务及手机服务。Kemampuan system untuk mengidentifikasi tanda tangan sesseorang menjadi penkarena banyak penalsuan yang terjadi。Penelitian ini bertujuan untuk mengis实现了亚洲的方法,拉普拉斯的dan jark,欧几里得的untuk mengis,确定了意大利的untuk mengis和意大利的untuk mengan。柑桔总杨迪古纳坎雅图20个,柑桔总达10个,柑桔总达15个,柑桔总达15个,柑桔总达5个,柑桔总达5个。Hasil penelitian ini menunjukkan bahwa方法deteksi tepi拉普拉斯dan jarak欧几里得memiliki akurasi sebesar 94%登干1号kettetanggaan,登干2号kettetanggaan memiliki akurasi sebesar 60%,登干3号kettetanggaan memiliki akurasi sebesar 74%。Kata Kunci: tanda tangan, deteksi tepi拉普拉斯和欧几里得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementasi Metode Deteksi Tepi Laplacian dan Jarak Euclidean untuk Identifikasi Tanda Tangan
Signature is one of the biometrics that are widely used for important document authentication and verification. The existence of a signature as a form of validation and approval in important documents is mandatory. Along in current sophisticated technological developments, signing can be done using digital media such as cellphones or other media. The ability of the system that can be identify a person signature is important. This research aims to implement the Laplacian edge detection method and Euclidean distance to identify a person signature. The total image that used is 20 signatures from 5 different people while 15 signatures as data training image and 5 signatures as a data test image. The result of this research indicate that Laplacian edge detection method and Euclidean distance have an accuracy of 94% with 1 neighbor, with 2 neighbor has an accuracy of 60% and has an accuracy of 74% with 3 neighbor.  Keywords : signature, Laplacian edge detection and Euclidean distance Abstra k Tanda tangan adalah salah satu biometrik yang banyak digunakan untuk autentikasi dan verifikasi dokumen penting. Keberadaan tanda tangan sebagai bentuk pengesahan dan persetujuan dalam dokumen-dokumen penting adalah hal yang wajib. Seiring perkembangan teknologi saat ini, proses penandatanganan dapat dilakukan dalam media digital seperti handphone maupun media lainnya. Kemampuan sistem untuk mengidentifikasi tanda tangan seseorang menjadi penting karena banyak pemalsuan yang terjadi. Penelitian ini bertujuan untuk mengimplementasikan metode deteksi tepi Laplacian dan jarak Euclidean untuk mengidentifikasi tanda tangan seseorang. Total citra yang digunakan yaitu 20 tanda tangan dari 10 orang yang berbeda dimana 15 tanda tangan sebagai data citra latih dan 5 tanda tangan sebagai data citra uji. Hasil penelitian ini menunjukkan bahwa metode deteksi tepi Laplacian dan jarak Euclidean memiliki akurasi sebesar 94% dengan 1 ketetanggaan, dengan 2 ketetanggaan memiliki akurasi sebesar 60%, dan memiliki akurasi sebesar 74% dengan 3 ketetanggaan. Kata Kunci : tanda tangan , deteksi tepi Laplacian dan jarak Euclidean
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
期刊最新文献
Development of DC Motor Speed Control Using PID Based on Arduino and Matlab For Laboratory Trainer IoT-Based Disaster Response Robot for Victim Identification in Building Collapses Techno-Economic Analysis for Raja Ampat Off-Grid System Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply Enhanced Identification of Valvular Heart Diseases through Selective Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1