{"title":"利用陆上-海上地震和大地测量资料识别马尔马拉海的张拉和张拉特征","authors":"Zeynep Coşkun, Ali̇ Pinar","doi":"10.55730/1300-0985.1846","DOIUrl":null,"url":null,"abstract":": The scope of the study is to determine transtensional and transpressional features along the North Anatolian Fault beneath the Sea of Marmara, using seismic and geodetic data. For this purpose, focal mechanisms of small size NAF earthquakes, recorded by broadband stations and OBSs, have been derived and used as a tool to identify the transtensional and transpressional features. The focal mechanisms of: (1) small to moderate size events are obtained by the CMT inversion technique of Kuge (2003), using onshore waveform data from 2002–2015, (2) micro-earthquakes are obtained using the technique of Horiuchi (2015), using offshore waveform data recorded by 15 OBS stations from 2015–2016. Furthermore, published GPS velocities are used to determine the style of faulting and strain rates. The geodetic horizontal crustal strain rates are determined at equally spaced grid points by interpolating northing and easting components of the 112 GPS vectors from 1994–2013. The results indicate that extensional and strike-slip style deformation dominates the region, while contractional features are rare. Significant extension is observed in Çınarcık Basin and the area between Marmara Island and Central Basin. Yalova-Çınarcık region shows predominantly N-S extension while the Çınarcık Basin events show NE-SW extension. Compressional or transpressional features are derived to the west of Marmara Island and Ganos and in the Central segment extending from Central Basin toward Çınarcık Basin. The GPS strain rate results point out the highest values, 24 × 10 –8 /year, in Çınarcık Basin, while the lowest values, 11 × 10 –8 /year, are observed in Central Marmara. The highest strain rates in both edges of the fault segment in Çınarcık Basin can be indicative of a steadily creeping fault segment. In turn, lower strain rates in the Central Marmara region suggest that this segment of the NAF is locked.","PeriodicalId":49411,"journal":{"name":"Turkish Journal of Earth Sciences","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of transtensional and transpressional features in the Sea of Marmara using onshore-offshore seismic and geodetic data\",\"authors\":\"Zeynep Coşkun, Ali̇ Pinar\",\"doi\":\"10.55730/1300-0985.1846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The scope of the study is to determine transtensional and transpressional features along the North Anatolian Fault beneath the Sea of Marmara, using seismic and geodetic data. For this purpose, focal mechanisms of small size NAF earthquakes, recorded by broadband stations and OBSs, have been derived and used as a tool to identify the transtensional and transpressional features. The focal mechanisms of: (1) small to moderate size events are obtained by the CMT inversion technique of Kuge (2003), using onshore waveform data from 2002–2015, (2) micro-earthquakes are obtained using the technique of Horiuchi (2015), using offshore waveform data recorded by 15 OBS stations from 2015–2016. Furthermore, published GPS velocities are used to determine the style of faulting and strain rates. The geodetic horizontal crustal strain rates are determined at equally spaced grid points by interpolating northing and easting components of the 112 GPS vectors from 1994–2013. The results indicate that extensional and strike-slip style deformation dominates the region, while contractional features are rare. Significant extension is observed in Çınarcık Basin and the area between Marmara Island and Central Basin. Yalova-Çınarcık region shows predominantly N-S extension while the Çınarcık Basin events show NE-SW extension. Compressional or transpressional features are derived to the west of Marmara Island and Ganos and in the Central segment extending from Central Basin toward Çınarcık Basin. The GPS strain rate results point out the highest values, 24 × 10 –8 /year, in Çınarcık Basin, while the lowest values, 11 × 10 –8 /year, are observed in Central Marmara. The highest strain rates in both edges of the fault segment in Çınarcık Basin can be indicative of a steadily creeping fault segment. In turn, lower strain rates in the Central Marmara region suggest that this segment of the NAF is locked.\",\"PeriodicalId\":49411,\"journal\":{\"name\":\"Turkish Journal of Earth Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0985.1846\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.55730/1300-0985.1846","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Identification of transtensional and transpressional features in the Sea of Marmara using onshore-offshore seismic and geodetic data
: The scope of the study is to determine transtensional and transpressional features along the North Anatolian Fault beneath the Sea of Marmara, using seismic and geodetic data. For this purpose, focal mechanisms of small size NAF earthquakes, recorded by broadband stations and OBSs, have been derived and used as a tool to identify the transtensional and transpressional features. The focal mechanisms of: (1) small to moderate size events are obtained by the CMT inversion technique of Kuge (2003), using onshore waveform data from 2002–2015, (2) micro-earthquakes are obtained using the technique of Horiuchi (2015), using offshore waveform data recorded by 15 OBS stations from 2015–2016. Furthermore, published GPS velocities are used to determine the style of faulting and strain rates. The geodetic horizontal crustal strain rates are determined at equally spaced grid points by interpolating northing and easting components of the 112 GPS vectors from 1994–2013. The results indicate that extensional and strike-slip style deformation dominates the region, while contractional features are rare. Significant extension is observed in Çınarcık Basin and the area between Marmara Island and Central Basin. Yalova-Çınarcık region shows predominantly N-S extension while the Çınarcık Basin events show NE-SW extension. Compressional or transpressional features are derived to the west of Marmara Island and Ganos and in the Central segment extending from Central Basin toward Çınarcık Basin. The GPS strain rate results point out the highest values, 24 × 10 –8 /year, in Çınarcık Basin, while the lowest values, 11 × 10 –8 /year, are observed in Central Marmara. The highest strain rates in both edges of the fault segment in Çınarcık Basin can be indicative of a steadily creeping fault segment. In turn, lower strain rates in the Central Marmara region suggest that this segment of the NAF is locked.
期刊介绍:
The Turkish Journal of Earth Sciences is published electronically 6 times a year by the Scientific and Technological Research
Council of Turkey (TÜBİTAK). It is an international English-language journal for the publication of significant original recent
research in a wide spectrum of topics in the earth sciences, such as geology, structural geology, tectonics, sedimentology,
geochemistry, geochronology, paleontology, igneous and metamorphic petrology, mineralogy, biostratigraphy, geophysics,
geomorphology, paleoecology and oceanography, and mineral deposits. Contribution is open to researchers of all nationalities.