C. Li, Yuhui Liu, Fengru Wang, Jerry Zhijian Yang null, Cheng Yuan
{"title":"模拟波浪在非均匀网格上传播的吸收界面条件","authors":"C. Li, Yuhui Liu, Fengru Wang, Jerry Zhijian Yang null, Cheng Yuan","doi":"10.4208/nmtma.oa-2022-0105","DOIUrl":null,"url":null,"abstract":"We proposed absorbing interface conditions for the simulation of linear wave propagation on non-uniform meshes. Based on the superposition principle of second-order linear wave equations, we decompose the interface condition problem into two subproblems around the interface: for the first one the conventional artificial absorbing boundary conditions is applied, while for the second one, the local analytic solutions can be derived. The proposed interface conditions permit a two-way transmission of low-frequency waves across mesh interfaces which can be supported by both coarse and fine meshes, and perform a one-way absorption of high-frequency waves which can only be supported by fine meshes when they travel from fine mesh regions to coarse ones. Numerical examples are presented to illustrate the efficiency of the proposed absorbing interface conditions. AMS subject classifications: 35K10, 65N06","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorbing Interface Conditions for the Simulation of Wave Propagation on NonUniform Meshes\",\"authors\":\"C. Li, Yuhui Liu, Fengru Wang, Jerry Zhijian Yang null, Cheng Yuan\",\"doi\":\"10.4208/nmtma.oa-2022-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed absorbing interface conditions for the simulation of linear wave propagation on non-uniform meshes. Based on the superposition principle of second-order linear wave equations, we decompose the interface condition problem into two subproblems around the interface: for the first one the conventional artificial absorbing boundary conditions is applied, while for the second one, the local analytic solutions can be derived. The proposed interface conditions permit a two-way transmission of low-frequency waves across mesh interfaces which can be supported by both coarse and fine meshes, and perform a one-way absorption of high-frequency waves which can only be supported by fine meshes when they travel from fine mesh regions to coarse ones. Numerical examples are presented to illustrate the efficiency of the proposed absorbing interface conditions. AMS subject classifications: 35K10, 65N06\",\"PeriodicalId\":51146,\"journal\":{\"name\":\"Numerical Mathematics-Theory Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Mathematics-Theory Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/nmtma.oa-2022-0105\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2022-0105","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Absorbing Interface Conditions for the Simulation of Wave Propagation on NonUniform Meshes
We proposed absorbing interface conditions for the simulation of linear wave propagation on non-uniform meshes. Based on the superposition principle of second-order linear wave equations, we decompose the interface condition problem into two subproblems around the interface: for the first one the conventional artificial absorbing boundary conditions is applied, while for the second one, the local analytic solutions can be derived. The proposed interface conditions permit a two-way transmission of low-frequency waves across mesh interfaces which can be supported by both coarse and fine meshes, and perform a one-way absorption of high-frequency waves which can only be supported by fine meshes when they travel from fine mesh regions to coarse ones. Numerical examples are presented to illustrate the efficiency of the proposed absorbing interface conditions. AMS subject classifications: 35K10, 65N06
期刊介绍:
Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.