A. Ersan, A. Kipcak, Meral Yildirim Ozen, N. Tugrul
{"title":"用声化学法由硫酸锌加速有效合成硼酸锌","authors":"A. Ersan, A. Kipcak, Meral Yildirim Ozen, N. Tugrul","doi":"10.1515/mgmc-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract Recently, sonochemistry has been used for the synthesis of inorganic compounds, such as zinc borates. In this study using zinc sulphate heptahydrate (ZnSO4·7H2O) and boric acid (H3BO3) as starting materials, a zinc borate compound in the form of Zn3B6O12·3.5H2O was synthesized using an ultrasonic probe. Product’s characterization was carried out with using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Zinc borate compound’s chemical bond structure was observed with Raman and FTIR. From the XRD results it was seen that Zn3B6O12·3.5H2O can be quickly synthesized upon heating at 80°C and 85°C (55 min) or 90°C (45 min) in very high yield (>90%). The minimum particle size obtained was ~143 μm from the SEM results. Zinc borate compound was synthesized at a lower temperature in less time than other synthesized zinc metal compound in literature.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"43 1","pages":"7 - 14"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mgmc-2020-0002","citationCount":"8","resultStr":"{\"title\":\"An accelerated and effective synthesis of zinc borate from zinc sulfate using sonochemistry\",\"authors\":\"A. Ersan, A. Kipcak, Meral Yildirim Ozen, N. Tugrul\",\"doi\":\"10.1515/mgmc-2020-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, sonochemistry has been used for the synthesis of inorganic compounds, such as zinc borates. In this study using zinc sulphate heptahydrate (ZnSO4·7H2O) and boric acid (H3BO3) as starting materials, a zinc borate compound in the form of Zn3B6O12·3.5H2O was synthesized using an ultrasonic probe. Product’s characterization was carried out with using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Zinc borate compound’s chemical bond structure was observed with Raman and FTIR. From the XRD results it was seen that Zn3B6O12·3.5H2O can be quickly synthesized upon heating at 80°C and 85°C (55 min) or 90°C (45 min) in very high yield (>90%). The minimum particle size obtained was ~143 μm from the SEM results. Zinc borate compound was synthesized at a lower temperature in less time than other synthesized zinc metal compound in literature.\",\"PeriodicalId\":48891,\"journal\":{\"name\":\"Main Group Metal Chemistry\",\"volume\":\"43 1\",\"pages\":\"7 - 14\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mgmc-2020-0002\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/mgmc-2020-0002\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2020-0002","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
An accelerated and effective synthesis of zinc borate from zinc sulfate using sonochemistry
Abstract Recently, sonochemistry has been used for the synthesis of inorganic compounds, such as zinc borates. In this study using zinc sulphate heptahydrate (ZnSO4·7H2O) and boric acid (H3BO3) as starting materials, a zinc borate compound in the form of Zn3B6O12·3.5H2O was synthesized using an ultrasonic probe. Product’s characterization was carried out with using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Zinc borate compound’s chemical bond structure was observed with Raman and FTIR. From the XRD results it was seen that Zn3B6O12·3.5H2O can be quickly synthesized upon heating at 80°C and 85°C (55 min) or 90°C (45 min) in very high yield (>90%). The minimum particle size obtained was ~143 μm from the SEM results. Zinc borate compound was synthesized at a lower temperature in less time than other synthesized zinc metal compound in literature.
期刊介绍:
This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.