Fahimeh Shamseali, F. Mohammadi, H. Pourzamani, Mahsa Janati
{"title":"合成水溶液和实际污染井水的电化学反硝化:RSM建模、动力学研究、蒙特卡罗优化和灵敏度分析","authors":"Fahimeh Shamseali, F. Mohammadi, H. Pourzamani, Mahsa Janati","doi":"10.1155/2022/1374993","DOIUrl":null,"url":null,"abstract":"The process of electrochemical denitrification is applied with the aim of converting nitrate (\n \n \n NO\n 3\n −\n \n \n ) to N2 gas by reducing nitrate and oxidizing by-products such as ammonia (\n \n \n NH\n 4\n +\n \n \n ). In this study, Ti/RuO2 and graphite were used as anode and cathode electrodes, respectively, to treat synthetic aqueous solutions containing different concentrations of nitrate ions. Nitrate initial concentration (2.75–55 mg NO3-N/lit), voltage (2.5–30 V), pH (3–13), electrode distance (ED = 0.5–3.5 cm), and reaction time (10–180 min) were the main studied operating parameters for the electrochemical denitrification (ECD) reactor. The experiments were designed using the central composite design (CCD) method. The experimental results were modeled with the response surface methodology (RSM) technique. Scanning electron microscope (SEM), X-ray diffraction analyzer (XRD), and Fourier transform infrared spectroscopy (FTIR) characterized electrodes were performed before and after all experiments. Optimization and sensitivity analysis was performed using the Monte Carlo simulation (MSC) approach. The energy consumption and current efficiency were calculated for the ECD reactor. Kinetic models of zero, first, and second order were evaluated, and the second-order model was selected as the best kinetic model. Also, the effect of adding monovalent, divalent salts, and organic compounds to the process was evaluated. Finally, three nitrate-contaminated water wells were selected near agricultural lands as real samples and investigated the performance of the ECD process on the samples. The performance of the ECD reactor for the real samples showed some decrease compared to the synthetic samples.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Denitrification of Synthetic Aqueous Solution and Actual Contaminated Well Water: RSM Modeling, Kinetic Study, Monte Carlo Optimization, and Sensitivity Analysis\",\"authors\":\"Fahimeh Shamseali, F. Mohammadi, H. Pourzamani, Mahsa Janati\",\"doi\":\"10.1155/2022/1374993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of electrochemical denitrification is applied with the aim of converting nitrate (\\n \\n \\n NO\\n 3\\n −\\n \\n \\n ) to N2 gas by reducing nitrate and oxidizing by-products such as ammonia (\\n \\n \\n NH\\n 4\\n +\\n \\n \\n ). In this study, Ti/RuO2 and graphite were used as anode and cathode electrodes, respectively, to treat synthetic aqueous solutions containing different concentrations of nitrate ions. Nitrate initial concentration (2.75–55 mg NO3-N/lit), voltage (2.5–30 V), pH (3–13), electrode distance (ED = 0.5–3.5 cm), and reaction time (10–180 min) were the main studied operating parameters for the electrochemical denitrification (ECD) reactor. The experiments were designed using the central composite design (CCD) method. The experimental results were modeled with the response surface methodology (RSM) technique. Scanning electron microscope (SEM), X-ray diffraction analyzer (XRD), and Fourier transform infrared spectroscopy (FTIR) characterized electrodes were performed before and after all experiments. Optimization and sensitivity analysis was performed using the Monte Carlo simulation (MSC) approach. The energy consumption and current efficiency were calculated for the ECD reactor. Kinetic models of zero, first, and second order were evaluated, and the second-order model was selected as the best kinetic model. Also, the effect of adding monovalent, divalent salts, and organic compounds to the process was evaluated. Finally, three nitrate-contaminated water wells were selected near agricultural lands as real samples and investigated the performance of the ECD process on the samples. The performance of the ECD reactor for the real samples showed some decrease compared to the synthetic samples.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1374993\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/1374993","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Electrochemical Denitrification of Synthetic Aqueous Solution and Actual Contaminated Well Water: RSM Modeling, Kinetic Study, Monte Carlo Optimization, and Sensitivity Analysis
The process of electrochemical denitrification is applied with the aim of converting nitrate (
NO
3
−
) to N2 gas by reducing nitrate and oxidizing by-products such as ammonia (
NH
4
+
). In this study, Ti/RuO2 and graphite were used as anode and cathode electrodes, respectively, to treat synthetic aqueous solutions containing different concentrations of nitrate ions. Nitrate initial concentration (2.75–55 mg NO3-N/lit), voltage (2.5–30 V), pH (3–13), electrode distance (ED = 0.5–3.5 cm), and reaction time (10–180 min) were the main studied operating parameters for the electrochemical denitrification (ECD) reactor. The experiments were designed using the central composite design (CCD) method. The experimental results were modeled with the response surface methodology (RSM) technique. Scanning electron microscope (SEM), X-ray diffraction analyzer (XRD), and Fourier transform infrared spectroscopy (FTIR) characterized electrodes were performed before and after all experiments. Optimization and sensitivity analysis was performed using the Monte Carlo simulation (MSC) approach. The energy consumption and current efficiency were calculated for the ECD reactor. Kinetic models of zero, first, and second order were evaluated, and the second-order model was selected as the best kinetic model. Also, the effect of adding monovalent, divalent salts, and organic compounds to the process was evaluated. Finally, three nitrate-contaminated water wells were selected near agricultural lands as real samples and investigated the performance of the ECD process on the samples. The performance of the ECD reactor for the real samples showed some decrease compared to the synthetic samples.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.