低成本红外传感器通过氧化和硝化参数评价汽油发动机油劣化

H. M. Shinde, A. K. Bewoor
{"title":"低成本红外传感器通过氧化和硝化参数评价汽油发动机油劣化","authors":"H. M. Shinde,&nbsp;A. K. Bewoor","doi":"10.1007/s13203-020-00248-6","DOIUrl":null,"url":null,"abstract":"<p>For the proper working of the internal combustion engine, engine oil plays a significant role. The performance of the engine is greatly affected by oil that has degenerated. In order to determine the optimal gap between oil changes, it is crucial to measure the deterioration in the engine oil. Multiple parameters like oxidation, nitration, viscosity and so on are brought into use. One of the methods used to quantify the deterioration in the engine oil is the Fourier Transform Infrared (FTIR) spectroscopy. The main parameters of the engine oil are distinguished by this method by utilizing Infrared (IR) absorption at different bandwidths. The two significant parameters in engine oil deterioration are oxidation and nitration. However, the limitation of the FTIR method is that it is more expensive and since it uses huge machinery, it requires a lot of area. Hence, the use of this method is not possible in the field area due to the need for space. It is this major limitation that is the motivation for proposing an inexpensive, yet handy system, using an IR sensor set up, in this paper. This system is used for measuring the transmittance of engine oil that has degenerated. For this paper, we collected random samples at various times from service stations that were specifically authorized. These samples were used in experiments based on the FTIR spectroscopy and UV spectrophotometer and the results were compared using the IR sensor setup. Investigation of the experimental results showed that monitoring oil transmittance using an IR sensor setup is possible, and a robust relationship between oxidation and nitration and the transmittance of the oil was observed. Moreover, a pattern of deterioration for a specific engine oil (SAE 5W30) which is utilized for passenger cars and light duty vehicles was also established.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"10 2","pages":"83 - 94"},"PeriodicalIF":0.1250,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-020-00248-6","citationCount":"10","resultStr":"{\"title\":\"Evaluating petrol engine oil deterioration through oxidation and nitration parameters by low-cost IR sensor\",\"authors\":\"H. M. Shinde,&nbsp;A. K. Bewoor\",\"doi\":\"10.1007/s13203-020-00248-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the proper working of the internal combustion engine, engine oil plays a significant role. The performance of the engine is greatly affected by oil that has degenerated. In order to determine the optimal gap between oil changes, it is crucial to measure the deterioration in the engine oil. Multiple parameters like oxidation, nitration, viscosity and so on are brought into use. One of the methods used to quantify the deterioration in the engine oil is the Fourier Transform Infrared (FTIR) spectroscopy. The main parameters of the engine oil are distinguished by this method by utilizing Infrared (IR) absorption at different bandwidths. The two significant parameters in engine oil deterioration are oxidation and nitration. However, the limitation of the FTIR method is that it is more expensive and since it uses huge machinery, it requires a lot of area. Hence, the use of this method is not possible in the field area due to the need for space. It is this major limitation that is the motivation for proposing an inexpensive, yet handy system, using an IR sensor set up, in this paper. This system is used for measuring the transmittance of engine oil that has degenerated. For this paper, we collected random samples at various times from service stations that were specifically authorized. These samples were used in experiments based on the FTIR spectroscopy and UV spectrophotometer and the results were compared using the IR sensor setup. Investigation of the experimental results showed that monitoring oil transmittance using an IR sensor setup is possible, and a robust relationship between oxidation and nitration and the transmittance of the oil was observed. Moreover, a pattern of deterioration for a specific engine oil (SAE 5W30) which is utilized for passenger cars and light duty vehicles was also established.</p>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"10 2\",\"pages\":\"83 - 94\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-020-00248-6\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-020-00248-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-020-00248-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

对于内燃机的正常工作,机油起着至关重要的作用。变质的机油对发动机的性能影响很大。为了确定最佳的换油间隙,对发动机油的劣化程度进行测量是至关重要的。引入了氧化、硝化、粘度等多种参数。傅里叶变换红外光谱(FTIR)是用于量化发动机油劣化的方法之一。该方法利用红外光谱在不同波段的吸收特性对发动机油的主要参数进行了识别。机油变质的两个重要参数是氧化和硝化。然而,FTIR方法的局限性在于它更昂贵,并且由于它使用巨大的机器,它需要大量的面积。因此,由于空间的需要,不可能在现场使用这种方法。这是主要的限制,这是动机提出一个便宜,但方便的系统,使用红外传感器设置,在本文中。该系统用于测量变质机油的透光率。在本文中,我们在不同时间从特别授权的服务站随机采集样本。利用红外光谱和紫外分光光度计对样品进行了实验,并利用红外传感器对实验结果进行了比较。实验结果表明,利用红外传感器装置监测油的透光率是可能的,并且观察到氧化和硝化作用与油的透光率之间存在牢固的关系。此外,还建立了用于乘用车和轻型车辆的特定发动机油(sae5w30)的劣化模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating petrol engine oil deterioration through oxidation and nitration parameters by low-cost IR sensor

For the proper working of the internal combustion engine, engine oil plays a significant role. The performance of the engine is greatly affected by oil that has degenerated. In order to determine the optimal gap between oil changes, it is crucial to measure the deterioration in the engine oil. Multiple parameters like oxidation, nitration, viscosity and so on are brought into use. One of the methods used to quantify the deterioration in the engine oil is the Fourier Transform Infrared (FTIR) spectroscopy. The main parameters of the engine oil are distinguished by this method by utilizing Infrared (IR) absorption at different bandwidths. The two significant parameters in engine oil deterioration are oxidation and nitration. However, the limitation of the FTIR method is that it is more expensive and since it uses huge machinery, it requires a lot of area. Hence, the use of this method is not possible in the field area due to the need for space. It is this major limitation that is the motivation for proposing an inexpensive, yet handy system, using an IR sensor set up, in this paper. This system is used for measuring the transmittance of engine oil that has degenerated. For this paper, we collected random samples at various times from service stations that were specifically authorized. These samples were used in experiments based on the FTIR spectroscopy and UV spectrophotometer and the results were compared using the IR sensor setup. Investigation of the experimental results showed that monitoring oil transmittance using an IR sensor setup is possible, and a robust relationship between oxidation and nitration and the transmittance of the oil was observed. Moreover, a pattern of deterioration for a specific engine oil (SAE 5W30) which is utilized for passenger cars and light duty vehicles was also established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Petrochemical Research
Applied Petrochemical Research ENGINEERING, CHEMICAL-
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.
期刊最新文献
Applied petrochemical research: final issue La-Faujasite zeolite activated with boron trifluoride: synthesis and application as solid acid catalyst for isobutane–isobutene alkylation Evaluation of hybrid solvents featuring choline chloride-based deep eutectic solvents and ethanol as extractants for the liquid–liquid extraction of benzene from n-hexane: towards a green and sustainable paradigm Trending approaches on demulsification of crude oil in the petroleum industry Synthesis and study of aroylethyl(ethyl)-xanthates as stabilizers of polymeric materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1